Supplemental Table

TGF-β Signaling in Development (Supplemental Table)

Krit Kitisin,1 Tapas Saha,1 Tiffany Blake,1 Nady Golestaneh,1 Merlyn Deng,1 Christine Kim,1 Yi Tang,1 Kirti Shetty,1 Bibhuti Mishra,1 Lopa Mishra1,2*

1Laboratory of Cancer Genetics and Digestive Diseases, Departments of Surgery, Medicine, and LCCC, Georgetown University, Washington, DC 20007, USA. 2DVAMC, Washington, DC 20007, USA.

Supplemental Table. TGF-β signaling in development based on mouse knockout and mutant analysis.


Developmental stage or processLigandsReceptorsIntracellular signaling molecules Citations

Primitive streak formationNodalALK2,
ActRII,
ActRIIB
Smad2,
Smad4
1

Mesoderm formationBMP2,
BMP4,
Nodal
ALK2,
ALK3,
ALK4
Smad2,
Smad4
1, 2

Endoderm formationCripto,
Nodal,
BMP4
ALK2,
ActRI
Smad43, 2, 4

Cardiac developmentBMP2,
Cripto,
Endoglin
ActRIIB,
ALK2
Smad4,
Smad5,
Smad6
5, 6

Kidney developmentBMP7,
BMP2,
BMP4
ALK4,
BMPRII,
BMPRIA,
BMPRIB
Smad1,
Smad4,
Smad5,
Smad8
7

Bone developmentTGF-β2,
TGF-β3,
BMP4
ALK6,
ActRIIA
Smad1,
Smad5,
Smad8
1

Liver and gastrointestinal tract developmentBMP1,
BMP4,
BMP7
BMPR1A,
ActRII,
ActRIIB
Smad2,
Smad3,
ELF,
Smad4
7, 8

Vasculogenesis and hematopoesisTGF-β1TβRI,
TβRII
Smad59, 10, 11

E-mail, lopamishra{at}yahoo.com

References

    • M. J. Goumans, C. Mummery, Functional analysis of the TGFβ receptor/Smad pathway through gene ablation in mice. Int. J. Dev. Biol. 44, 253�265 (2000).
    • C. Sirard, J. L. de la Pompa, A. Elia, A. Itie, C. Mirtsos, A. Cheung, S. Hahn, A. Wakeham, L. Schwartz, S. E. Kern, J. Rossant, T. W. Mak, The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev. 12, 107�119 (1998).
    • R. Derynck, Y. E. Zhang, Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425, 577�584 (2003).
    • L. Strizzi, C. Bianco, N. Normanno, D. Salomon, Cripto-1: A multifunctional modulator during embryogenesis and oncogenesis. Oncogene 24, 5731�5741 (2005).
    • J. S. Desgrosellier, N. A. Mundell, M. A. McDonnell, H. L. Moses, J. V. Barnett, Activin receptor-like kinase 2 and Smad6 regulate epithelial-mesenchymal transformation during cardiac valve formation. Dev. Biol. 280, 201�210 (2005).
    • H. Zhang, A. Bradley, Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122, 2977�2986 (1996).
    • J. Massague, S. W. Blain, R. S. Lo, TGFβ signaling in growth control, cancer, and heritable disorders. Cell 103, 295�309 (2000).
    • Y. Tang, V. Katuri, A. Dillner, B. Mishra, C. X. Deng, L. Mishra, Disruption of transforming growth factor-β signaling in ELF β-spectrin-deficient mice. Science 299, 574�577 (2003).
    • J. Larsson, M. J. Goumans, L. J. Sjostrand, M. A. van Rooijen, D. Ward, P. Leveen, X. Xu, P. ten Dijke, C. L. Mummery, S. Karlsson, Abnormal angiogenesis but intact hematopoietic potential in TGF-β type I receptor-deficient mice. EMBO J. 20, 1663�1673 (2001).
    • M. Oshima, H. Oshima, M. M. Taketo, TGF-β receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev. Biol. 179, 297�302 (1996).
    • B. Liu, Y. Sun, F. Jiang, S. Zhang, Y. Wu, Y. Lan, X. Yang, N. Mao, Disruption of Smad5 gene leads to enhanced proliferation of high-proliferative potential precursors during embryonic hematopoiesis. Blood 101, 124�133 (2003).

    Citation: K. Kitisin, T. Saha, T. Blake, N. Golestaneh, M. Deng, C. Kim, Y. Tang, K. Shetty, B. Mishra, L. Mishra, TGF-β signaling in development. Sci. STKE (Connections Map in Database of Cell Signaling, as seen July 2007) http://stke.sciencemag.org/cgi/cm/stkecm;CMP_18196.