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Figure S1.  Identification of Tyrosine Phosphorylation Sites on Kinase-

ESI-MS and MS/MS. Each of the kinase-dead samples analyzed by native-PAGE was subjected 

to in gel trypsin digestion.  The resulting tryptic digest for each phosphorylation state was further 

analyzed by nano-LC (Dionex Ultimate3000 System) coupled to a Thermo ESI LTQ mass 

spectrometer. A typical gradient was run for 60 min from 0 to 100% solvent B (80% acetonitrile, 

20% H2O and 0.1% formic acid). Solvent A consisted of 5% acetonitrile, 95% H2O and 0.1% 

formic acid. The flow rate was set at 200 nL/min on a 75 µm x 10 cm fused silica capillary 

column (New Objectives) in-house packed with Michrom Magic C18AQ (200 Å, 5 µm). The 

ESI LTQ mass spectrometer was operated in selected ion monitoring mode (SIM) for precursor 

ions corresponding to the peptides containing unphosphorylated and phosphorylated tyrosine 

residues. The peptide identification was performed automatically using the Bioworks 3.1 

software. The generated peptide list was ranked by XCorr to charge state ratio and the 

phosphorylation sites were identified for each phosphorylation state.  Representative MS/MS 
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Figure S2.  Identification of Tyrosine Phosphorylation Sites of N546K Glioblastoma using 

ESI-MS and MS/MS. The N546K mutant was analyzed by native-PAGE was subjected to in gel 

trypsin digestion.  The resulting tryptic digest for each phosphorylation state was further 

analyzed by nano-LC (Dionex Ultimate3000 System) coupled to a Thermo ESI LTQ mass 

spectrometer. A typical gradient was run for 60 min from 0 to 100% solvent B (80% acetonitrile, 

20% H2O and 0.1% formic acid). Solvent A consisted of 5% acetonitrile, 95% H2O, and 0.1% 

formic acid. The flow rate was set at 200 nL/min on a 75 µm x 10 cm fused silica capillary 

column (New Objectives) in-house packed with Michrom Magic C18AQ (200 Å, 5 µm). The 

ESI LTQ mass spectrometer was operated in selected ion monitoring mode (SIM) for precursor 

ions corresponding to the peptides containing unphosphorylated and phosphorylated tyrosine 

residues. The peptide identification was performed automatically using the Bioworks 3.1 

software. The generated peptide list was ranked by XCorr to charge state ratio and the 

phosphorylation sites were identified for each phosphorylation state.  Representative MS/MS 

spectra for the unphosphorylated tyrosine containing peptides for N546K glioblastoma mutant to 

determine the order of autophosphorylation are shown in (A-B). 
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Figure S3. Determination of KM for FGFR1-mediated Substrate Phosphorylation.  

32P]-ATP and 2 mM MgCl2 in 10 mM HEPES, pH 7.4 in a rapid chemical quench apparatus at 

25oC.  The reaction was quenched at various times as indicated upon the addition of 83 mM 

EDTA, and the formation of the monophosphorylated species over time was followed by 

incorporation of radiolabeled phosphate.  Reactions utilizing concentrations of substrate below 

50 nM were below the limit of detection and could not be visualized on the gel. 

Phosphorylation of kinase-dead substrate ( ) by fully activated kinase.  FGFR1-3F-2P 

kinase (3 μM) was incubated with 50 nM-2.5 μM  substrate in the presence of 1 mM [γ-
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Figure S4. 3T3 Cells Stably Expressing Wild-Type or Mutant FGFR1. 3T3 cells stably 

expressing either (A) a wild-type FGFR1 or (B) a glioblastoma-derived FGFR1_N546K mutant.  



 

Reaction steps FGFR1K 
KinTekSim Mechanism 

Monophasic 

FGFR1K_N546K 
KinTekSim Mechanism 

           Monophasic                              Biphasic 
Dimerization 

mM-1s-1 
400 400 NA 

ATP binding 
mM-1s-1 

0.0175 0.0175 NA 

0P → 1P, s-1 0.009 0.09 FP 0.25 
SP 0.025 

1P → 2P, s-1 0.008 0.05 FP 0.045 
SP 0.009 

2P → 3P, s-1 0.007 0.04 FP 0.015 
SP 0.004 

3P → 4P, s-1 0.004 ND ND 
4P → 5P, s-1 0.003 ND ND 
5P → 6P, s-1 - - - 

 
 
Table S1. Comparison of Autophosphorylation Kinetics of FGFR1 Kinase (WT) and 

FGFR1 Kinase Mutant Implicated in Glioblastoma, N546K. Abbreviations: NA: not 

applicable, FGFR1K dimerization and ATP binding were not included in the biphasic 

mechanism used for kinetic simulation; FP: fast phase in the biphasic mechanism; SP: slow 

phase in the biphasic mechanism; ND: not determined, the additional kinetic steps required to 

describe the biphasic behavior limited the number of phosphorylation events used for kinetic 

simulation 

 

 

 

 
 


