Error message

No crossref credentials set for genesdev

An Eph receptor sperm-sensing control mechanism for oocyte meiotic maturation in Caenorhabditis elegans

Genes & Dev., 15 January 2003
Vol. 17, Issue 2, p. 187-200
DOI: 10.1101/gad.1028303

An Eph receptor sperm-sensing control mechanism for oocyte meiotic maturation in Caenorhabditis elegans

  1. Michael A. Miller,
  2. Paul J. Ruest,
  3. Mary Kosinski,
  4. Steven K. Hanks, and
  5. David Greenstein1
  1. Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA


During sexual reproduction in most animals, oocytes arrest in meiotic prophase and resume meiosis (meiotic maturation) in response to sperm or somatic cell signals. Despite progress in delineating mitogen-activated protein kinase (MAPK) and CDK/cyclin activation pathways involved in meiotic maturation, it is less clear how these pathways are regulated at the cell surface. The Caenorhabditis elegans major sperm protein (MSP) signals oocytes, which are arrested in meiotic prophase, to resume meiosis and ovulate. We used DNA microarray data and an in situ binding assay to identify the VAB-1 Eph receptor protein–tyrosine kinase as an MSP receptor. We show that VAB-1 and a somatic gonadal sheath cell-dependent pathway, defined by the CEH-18 POU-class homeoprotein, negatively regulate meiotic maturation and MAPK activation. MSP antagonizes these inhibitory signaling circuits, in part by binding VAB-1 on oocytes and sheath cells. Our results define a sperm-sensing control mechanism that inhibits oocyte maturation, MAPK activation, and ovulation when sperm are unavailable for fertilization. MSP-domain proteins are found in diverse animal taxa, where they may regulate contact-dependent Eph receptor signaling pathways.

  • Meiosis
  • meiotic maturation
  • Eph receptor
  • soma–germline interactions
  • major sperm protein
  • ephrin


  • 1 Corresponding author.

  • E-MAIL david.greenstein{at}; FAX (615) 936-3421.

  • Article and publication are at

    • Received July 31, 2002.
    • Accepted November 14, 2002.


M. A. Miller, P. J. Ruest, M. Kosinski, S. K. Hanks, and D. Greenstein, An Eph receptor sperm-sensing control mechanism for oocyte meiotic maturation in Caenorhabditis elegans . Genes & Dev. 17, 187-200 (2003).

Communication between oocytes and somatic cells regulates volatile pheromone production in Caenorhabditis elegans
D. H. W. Leighton, A. Choe, S. Y. Wu, and P. W. Sternberg
Proc. Natl. Acad. Sci. USA 111, 17905-17910 (16 December 2014)

Translational Control of the Oogenic Program by Components of OMA Ribonucleoprotein Particles in Caenorhabditis elegans
C. A. Spike, D. Coetzee, Y. Nishi, T. Guven-Ozkan, M. Oldenbroek, I. Yamamoto, R. Lin, and D. Greenstein
Genetics 198, 1513-1533 (1 December 2014)

Mechanisms of Ephrin Receptor Protein Kinase-Independent Signaling in Amphid Axon Guidance in Caenorhabditis elegans
E. N. Grossman, C. A. Giurumescu, and A. D. Chisholm
Genetics 195, 899-913 (1 November 2013)

SACY-1 DEAD-Box Helicase Links the Somatic Control of Oocyte Meiotic Maturation to the Sperm-to-Oocyte Switch and Gamete Maintenance in Caenorhabditis elegans
S. Kim, J. A. Govindan, Z. J. Tu, and D. Greenstein
Genetics 192, 905-928 (1 November 2012)

Sperm Status Regulates Sexual Attraction in Caenorhabditis elegans
N. S. Morsci, L. A. Haas, and M. M. Barr
Genetics 189, 1341-1346 (1 December 2011)

Developmental Control of Oocyte Maturation and Egg Activation in Metazoan Models
J. R. Von Stetina, and T. L. Orr-Weaver
Cold Spring Harb. Perspect. Biol. 3, a005553-a005553 (1 October 2011)

The EGR family gene egrh-1 functions non-autonomously in the control of oocyte meiotic maturation and ovulation in C. elegans
L. M. Clary, and P. G. Okkema
Development 137, 3129-3137 (15 September 2010)

A practical, bioinformatic workflow system for large data sets generated by next-generation sequencing
C. Cantacessi, A. R. Jex, R. S. Hall, N. D. Young, B. E. Campbell, A. Joachim, M. J. Nolan, S. Abubucker, P. W. Sternberg, S. Ranganathan et al.
Nucleic Acids Res 38, e171-e171 (1 September 2010)

Caenorhabditis elegans FOS-1 and JUN-1 Regulate plc-1 Expression in the Spermatheca to Control Ovulation
S. M. Hiatt, H. M. Duren, Y. J. Shyu, R. E. Ellis, N. Hisamoto, K. Matsumoto, K.-i. Kariya, T. K. Kerppola, and C.-D. Hu
Mol. Biol. Cell 20, 3888-3895 (1 September 2009)

MSP and GLP-1/Notch signaling coordinately regulate actomyosin-dependent cytoplasmic streaming and oocyte growth in C. elegans
S. Nadarajan, J. A. Govindan, M. McGovern, E. J. A. Hubbard, and D. Greenstein
Development 136, 2223-2234 (1 July 2009)

Somatic cAMP signaling regulates MSP-dependent oocyte growth and meiotic maturation in C. elegans
J. A. Govindan, S. Nadarajan, S. Kim, T. A. Starich, and D. Greenstein
Development 136, 2211-2221 (1 July 2009)

Reduction in ovulation or male sex phenotype increases long-term anoxia survival in a daf-16-independent manner in Caenorhabditis elegans
A. R. Mendenhall, M. G. LeBlanc, D. P. Mohan, and P. A. Padilla
Physiol. Genomics 36, 167-178 (2 February 2009)

Regulation of EphB2 activation and cell repulsion by feedback control of the MAPK pathway
A. Poliakov, M. L. Cotrina, A. Pasini, and D. G. Wilkinson
JCB 183, 933-947 (1 December 2008)

The Mood Stabilizer Valproate Inhibits both Inositol- and Diacylglycerol-signaling Pathways in Caenorhabditis elegans
S. M. Tokuoka, A. Saiardi, and S. J. Nurrish
Mol. Biol. Cell 19, 2241-2250 (1 May 2008)

Studying gene function in Caenorhabditis elegans using RNA-mediated interference
E. M. Maine, A. Saiardi, and S. J. Nurrish
Briefings in Functional Genomics 7, 184-194 (1 May 2008)

Eph, a Protein Family Coming of Age: More Confusion, Insight, or Complexity?
M. Lackmann, and A. W. Boyd
Sci Signal 1, re2-re2 (15 April 2008)

Eph/ephrin signaling: networks
D. Arvanitis, and A. Davy
Genes Dev. 22, 416-429 (15 February 2008)

Acrylamide-Responsive Genes in the Nematode Caenorhabditis elegans
K. Hasegawa, S. Miwa, K. Isomura, K. Tsutsumiuchi, H. Taniguchi, and J. Miwa
Toxicol Sci 101, 215-225 (1 February 2008)

Multiple Functions and Dynamic Activation of MPK-1 Extracellular Signal-Regulated Kinase Signaling in Caenorhabditis elegans Germline Development
M.-H. Lee, M. Ohmachi, S. Arur, S. Nayak, R. Francis, D. Church, E. Lambie, and T. Schedl
Genetics 177, 2039-2062 (1 December 2007)

Ephrin-Eph signalling drives the asymmetric division of notochord/neural precursors in Ciona embryos
V. Picco, C. Hudson, and H. Yasuo
Development 134, 1491-1497 (15 April 2007)

Proteasomal Ubiquitin Receptor RPN-10 Controls Sex Determination in Caenorhabditis elegans
M. Shimada, K. Kanematsu, K. Tanaka, H. Yokosawa, and H. Kawahara
Mol. Biol. Cell 17, 5356-5371 (1 December 2006)

A Genomewide Screen for Suppressors of par-2 Uncovers Potential Regulators of PAR Protein-Dependent Cell Polarity in Caenorhabditis elegans
J.-C. Labbe, A. Pacquelet, T. Marty, and M. Gotta
Genetics 174, 285-295 (1 September 2006)

Genetic redundancy masks diverse functions of the tumor suppressor gene PTEN during C. elegans development.
Y. Suzuki, and M. Han
Genes Dev. 20, 423-428 (15 February 2006)

The C. elegans Myt1 ortholog is required for the proper timing of oocyte maturation
A. E. Burrows, B. K. Sceurman, M. E. Kosinski, C. T. Richie, P. L. Sadler, J. M. Schumacher, and A. Golden
Development 133, 697-709 (15 February 2006)

Analysis of the Female Gametophyte Transcriptome of Arabidopsis by Comparative Expression Profiling
H.-J. Yu, P. Hogan, and V. Sundaresan
Plant Physiol. 139, 1853-1869 (1 December 2005)

Eph and NMDA receptors control Ca2+/calmodulin-dependent protein kinase II activation during C. elegans oocyte meiotic maturation
C. Corrigan, R. Subramanian, and M. A. Miller
Development 132, 5225-5237 (1 December 2005)

C. elegans sperm bud vesicles to deliver a meiotic maturation signal to distant oocytes
M. Kosinski, K. McDonald, J. Schwartz, I. Yamamoto, and D. Greenstein
Development 132, 3357-3369 (1 August 2005)

The Caenorhabditis elegans spe-38 gene encodes a novel four-pass integral membrane protein required for sperm function at fertilization
I. Chatterjee, A. Richmond, E. Putiri, D. C. Shakes, and A. Singson
Development 132, 2795-2808 (15 June 2005)

Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis
J. Holmberg, A. Armulik, K.-A. Senti, K. Edoff, K. Spalding, S. Momma, R. Cassidy, J. G. Flanagan, and J. Frisen
Genes Dev. 19, 462-471 (15 February 2005)

PAR-3 is required for epithelial cell polarity in the distal spermatheca of C. elegans
S. Aono, R. Legouis, W. A. Hoose, and K. J. Kemphues
Development 131, 2865-2874 (15 June 2004)

Tropomyosin and Troponin Are Required for Ovarian Contraction in the Caenorhabditis elegans Reproductive System
K. Ono, and S. Ono
Mol. Biol. Cell 15, 2782-2793 (1 June 2004)

Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans
V. Reinke, I. S. Gil, S. Ward, and K. Kazmer
Development 131, 311-323 (15 January 2004)

Talin loss-of-function uncovers roles in cell contractility and migration in C. elegans
E. J. Cram, S. G. Clark, and J. E. Schwarzbauer
J. Cell Sci. 116, 3871-3878 (1 October 2003)

Multiple roles of ephrins in morphogenesis, neuronal networking, and brain function
A. Palmer, and R. Klein
Genes Dev. 17, 1429-1450 (15 June 2003)

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882