Error message

No crossref credentials set for genesdev

Cell contact-dependent acquisition of cellular and viral nonautonomously encoded small RNAs

Genes & Dev., 15 August 2009
Vol. 23, Issue 16, p. 1971-1979
DOI: 10.1101/gad.1789609

Cell contact-dependent acquisition of cellular and viral nonautonomously encoded small RNAs

  1. Oded Rechavi1,4,
  2. Yaniv Erlich2,4,
  3. Hila Amram3,4,
  4. Lena Flomenblit3,
  5. Fedor V. Karginov2,
  6. Itamar Goldstein3,
  7. Gregory J. Hannon2,5 and
  8. Yoel Kloog1,6
  1. 1Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel;
  2. 2Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
  3. 3Immunology Program, Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer, and Sackler School of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
    1. 4 These authors contributed equally to this work.


    In some organisms, small RNA pathways can act nonautonomously, with responses spreading from cell to cell. Dedicated intercellular RNA delivery pathways have not yet been characterized in mammals, although secretory compartments have been found to contain RNA. Here we show that, upon cell contact, T cells acquire from B cells small RNAs that can impact the expression of target genes in the recipient T cells. Synthetic microRNA (miRNA) mimetics, viral miRNAs expressed by infected B cells, and endogenous miRNAs could all be transferred into T cells. These mechanisms may allow small RNA-mediated communication between immune cells. The documented transfer of viral miRNAs raises the possible exploitation of these pathways for viral manipulation of the host immune response.

    • microRNA
    • shRNA
    • intercellular transfer
    • immunity



    O. Rechavi, Y. Erlich, H. Amram, L. Flomenblit, F. V. Karginov, I. Goldstein, G. J. Hannon, and Y. Kloog, Cell contact-dependent acquisition of cellular and viral nonautonomously encoded small RNAs. Genes & Dev. 23, 1971-1979 (2009).

    Traffic into silence: endomembranes and post-transcriptional RNA silencing
    Y. J. Kim, A. Maizel, and X. Chen
    EMBO J. 33, 968-980 (2 May 2014)

    MicroRNAs Transfer from Human Macrophages to Hepato-Carcinoma Cells and Inhibit Proliferation
    A. Aucher, D. Rudnicka, and D. M. Davis
    J. Immunol. 191, 6250-6260 (15 December 2013)

    Role of bacterial infections in pancreatic cancer
    D. S. Michaud, D. Rudnicka, and D. M. Davis
    Carcinogenesis 34, 2193-2197 (1 October 2013)

    Ras Oncoproteins Transfer from Melanoma Cells to T Cells and Modulate Their Effector Functions
    H. Vernitsky, O. Rechavi, N. Rainy, M. J. Besser, M. Nagar, J. Schachter, Y. Lerenthal, M. Ehrlich, Y. Kloog, I. Goldstein et al.
    J. Immunol. 189, 4361-4370 (1 November 2012)

    Hepatic cell-to-cell transmission of small silencing RNA can extend the therapeutic reach of RNA interference (RNAi)
    Q. Pan, V. Ramakrishnaiah, S. Henry, S. Fouraschen, P. E. de Ruiter, J. Kwekkeboom, H. W. Tilanus, H. L. A. Janssen, and L. J. W. van der Laan
    Gut 61, 1330-1339 (1 September 2012)

    Homo sapiens Systemic RNA Interference-defective-1 Transmembrane Family Member 1 (SIDT1) Protein Mediates Contact-dependent Small RNA Transfer and MicroRNA-21-driven Chemoresistance
    M. O. Elhassan, J. Christie, and M. S. Duxbury
    J Biol Chem 287, 5267-5277 (17 February 2012)

    Critical Reevaluation of Endothelial Progenitor Cell Phenotypes for Therapeutic and Diagnostic Use
    G. P. Fadini, D. Losordo, and S. Dimmeler
    Circ. Res. 110, 624-637 (17 February 2012)

    MicroRNAs are shaping the hematopoietic landscape
    U. Bissels, A. Bosio, and W. Wagner
    haematol 97, 160-167 (1 February 2012)

    A Three-Dimensional RNA Motif in Potato spindle tuber viroid Mediates Trafficking from Palisade Mesophyll to Spongy Mesophyll in Nicotiana benthamiana
    R. Takeda, A. I. Petrov, N. B. Leontis, and B. Ding
    Plant Cell 23, 258-272 (1 January 2011)

    Secretory Mechanisms and Intercellular Transfer of MicroRNAs in Living Cells
    N. Kosaka, H. Iguchi, Y. Yoshioka, F. Takeshita, Y. Matsuki, and T. Ochiya
    J Biol Chem 285, 17442-17452 (4 June 2010)

    Functional delivery of viral miRNAs via exosomes
    D. M. Pegtel, K. Cosmopoulos, D. A. Thorley-Lawson, M. A. J. van Eijndhoven, E. S. Hopmans, J. L. Lindenberg, T. D. de Gruijl, T. Wurdinger, and J. M. Middeldorp
    Proc. Natl. Acad. Sci. USA 107, 6328-6333 (6 April 2010)

    Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882