Error message

No crossref credentials set for mcb

Sequestration of TRAF2 into Stress Granules Interrupts Tumor Necrosis Factor Signaling under Stress Conditions

Mol. Cell. Biol., 15 March 2005
Vol. 25, Issue 6, p. 2450-2462
DOI: 10.1128/MCB.25.6.2450-2462.2005

Sequestration of TRAF2 into Stress Granules Interrupts Tumor Necrosis Factor Signaling under Stress Conditions

  1. Woo Jae Kim1,,
  2. Sung Hoon Back1,,
  3. Vit Kim1,
  4. Incheol Ryu1 and
  5. Sung Key Jang1,*
  1. 1National Research Laboratory, Postech Biotech Center, Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Korea

ABSTRACT

The cellular stress response (SR) is a phylogenetically conserved protection mechanism that involves inhibition of protein synthesis through recruitment of translation factors such as eIF4G into insoluble stress granules (SGs) and blockade of proinflammatory responses by interruption of the signaling pathway from tumor necrosis factor alpha (TNF-α) to nuclear factor-κB (NF-κB) activation. However, the link between these two physiological phenomena has not been clearly elucidated. Here we report that eIF4GI, which is a scaffold protein interacting with many translation factors, interacts with TRAF2, a signaling molecule that plays a key role in activation of NF-κB through TNF-α. These two proteins colocalize in SGs during cellular exposure to stress conditions. Moreover, TRAF2 is absent from TNFR1 complexes under stress conditions even after TNF-α treatment. This suggests that stressed cells lower their biological activities by sequestration of translation factors and TRAF2 into SGs through a protein-protein interaction.

FOOTNOTES

    • Received 26 August 2004.
    • Returned for modification 14 September 2004.
    • Accepted 24 November 2004.
  • *Corresponding author. Mailing address: NRL, PBC, Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyoja-Dong San 31, Pohang, Kyungbuk 790-784, Korea. Phone: 82 54 279 2298. Fax: 82 54 279 8009. E-mail: sungkey{at}postech.ac.kr.
  • W.J.K. and S.H.B. contributed equally to the work.

Citation:

W. J. Kim, S. H. Back, V. Kim, I. Ryu, and S. K. Jang, Sequestration of TRAF2 into Stress Granules Interrupts Tumor Necrosis Factor Signaling under Stress Conditions. Mol. Cell. Biol. 25, 2450-2462 (2005).

A20 suppresses vascular inflammation by recruiting proinflammatory signaling molecules to intracellular aggresomes
K. Enesa, H. P. Moll, L. Luong, C. Ferran, and P. C. Evans
FASEB J. 29, 1869-1878 (1 May 2015)

Cytoplasmic hGle1A regulates stress granules by modulation of translation
Aditi, A. W. Folkmann, and S. R. Wente
Mol. Biol. Cell 26, 1476-1490 (15 April 2015)

Flaviviral RNAs: weapons and targets in the war between virus and host
K. Bidet, and M. A. Garcia-Blanco
Biochem. J. 462, 215-230 (1 September 2014)

RNA Granule Assembly and Disassembly Modulated by Nuclear Factor Associated with Double-stranded RNA 2 and Nuclear Factor 45
N. Shiina, and K. Nakayama
J Biol Chem 289, 21163-21180 (25 July 2014)

5-Fluorouracil affects assembly of stress granules based on RNA incorporation
C. Kaehler, J. Isensee, T. Hucho, H. Lehrach, and S. Krobitsch
Nucleic Acids Res 42, 6436-6447 (2 June 2014)

Inactivation of the mTORC1-Eukaryotic Translation Initiation Factor 4E Pathway Alters Stress Granule Formation
M.-J. Fournier, L. Coudert, S. Mellaoui, P. Adjibade, C. Gareau, M.-F. Cote, N. Sonenberg, R. C. Gaudreault, and R. Mazroui
Mol. Cell. Biol. 33, 2285-2301 (1 June 2013)

Translation suppression promotes stress granule formation and cell survival in response to cold shock
S. Hofmann, V. Cherkasova, P. Bankhead, B. Bukau, and G. Stoecklin
Mol. Biol. Cell 23, 3786-3800 (1 October 2012)

Selenite targets eIF4E-binding protein-1 to inhibit translation initiation and induce the assembly of non-canonical stress granules
K. Fujimura, A. T. Sasaki, and P. Anderson
Nucleic Acids Res 40, 8099-8110 (1 September 2012)

Influenza A virus inhibits cytoplasmic stress granule formation
D. A. Khaperskyy, T. F. Hatchette, and C. McCormick
FASEB J. 26, 1629-1639 (1 April 2012)

DAZL is essential for stress granule formation implicated in germ cell survival upon heat stress
B. Kim, H. J. Cooke, and K. Rhee
Development 139, 568-578 (1 February 2012)

A Novel Role for hSMG-1 in Stress Granule Formation
J. A. L. Brown, T. L. Roberts, R. Richards, R. Woods, G. Birrell, Y. C. Lim, S. Ohno, A. Yamashita, R. T. Abraham, N. Gueven et al.
Mol. Cell. Biol. 31, 4417-4429 (15 November 2011)

The Epstein-Barr Virus BRRF1 Protein, Na, Induces Lytic Infection in a TRAF2- and p53-Dependent Manner
S. R. Hagemeier, E. A. Barlow, A. A. Kleman, and S. C. Kenney
J. Virol. 85, 4318-4329 (1 May 2011)

Role of Microtubules in Stress Granule Assembly: MICROTUBULE DYNAMICAL INSTABILITY FAVORS THE FORMATION OF MICROMETRIC STRESS GRANULES IN CELLS
K. G. Chernov, A. Barbet, L. Hamon, L. P. Ovchinnikov, P. A. Curmi, and D. Pastre
J Biol Chem 284, 36569-36580 (25 December 2009)

A new MIF4G domain-containing protein, CTIF, directs nuclear cap-binding protein CBP80/20-dependent translation
K. M. Kim, H. Cho, K. Choi, J. Kim, B.-W. Kim, Y.-G. Ko, S. K. Jang, and Y. K. Kim
Genes Dev. 23, 2033-2045 (1 September 2009)

The eIF4E-binding proteins are modifiers of cytoplasmic eIF4E relocalization during the heat shock response
R. Sukarieh, N. Sonenberg, and J. Pelletier
Am. J. Physiol. Cell Physiol. 296, C1207-C1217 (1 May 2009)

Mammalian Staufen 1 is recruited to stress granules and impairs their assembly
M. G. Thomas, L. J. M. Tosar, M. A. Desbats, C. C. Leishman, and G. L. Boccaccio
J. Cell Sci. 122, 563-573 (15 February 2009)

Proline-Rich Transcript in Brain Protein Induces Stress Granule Formation
J.-E. Kim, I. Ryu, W. J. Kim, O.-K. Song, J. Ryu, M. Y. Kwon, J. H. Kim, and S. K. Jang
Mol. Cell. Biol. 28, 803-813 (15 January 2008)

Anti-inflammatory lipid mediator 15d-PGJ2 inhibits translation through inactivation of eIF4A
W. J. Kim, J. H. Kim, and S. K. Jang
EMBO J. 26, 5020-5032 (12 December 2007)

Monitoring the Antiviral Effect of Alpha Interferon on Individual Cells
C. S. Kim, J. H. Jung, T. Wakita, S. K. Yoon, and S. K. Jang
J. Virol. 81, 8814-8820 (15 August 2007)

The exon-junction-complex-component metastatic lymph node 51 functions in stress-granule assembly
A. Baguet, S. Degot, N. Cougot, E. Bertrand, M.-P. Chenard, C. Wendling, P. Kessler, H. Le Hir, M.-C. Rio, C. Tomasetto et al.
J. Cell Sci. 120, 2774-2784 (15 August 2007)

An RNA-Binding Protein, hnRNP A1, and a Scaffold Protein, Septin 6, Facilitate Hepatitis C Virus Replication
C. S. Kim, S. K. Seol, O.-K. Song, J. H. Park, and S. K. Jang
J. Virol. 81, 3852-3865 (15 April 2007)

Distinct Structural Features ofCaprin-1 Mediate Its Interaction with G3BP-1 and Its Induction of Phosphorylation of Eukaryotic Translation Initiation Factor 2{alpha}, Entry to Cytoplasmic Stress Granules, and Selective Interaction with a Subset of mRNAs
S. Solomon, Y. Xu, B. Wang, M. D. David, P. Schubert, D. Kennedy, and J. W. Schrader
Mol. Cell. Biol. 27, 2324-2342 (15 March 2007)

Human sat III and Drosophila hsr{omega} transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells
C. Jolly, and S. C. Lakhotia
Nucleic Acids Res 34, 5508-5514 (14 November 2006)

Eukaryotic Initiation Factor 2{alpha}-independent Pathway of Stress Granule Induction by the Natural Product Pateamine A
Y. Dang, N. Kedersha, W.-K. Low, D. Romo, M. Gorospe, R. Kaufman, P. Anderson, and J. O. Liu
J Biol Chem 281, 32870-32878 (27 October 2006)

RNA granules
P. Anderson, and N. Kedersha
JCB 172, 803-808 (13 March 2006)

That Which Does Not Kill You Makes You Stronger: A Molecular Mechanism for Preconditioning
J. E. McDunn, and J. P. Cobb
Sci Signal 2005, pe34-pe34 (5 July 2005)

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882