Error message

No crossref credentials set for pnas

Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis

PNAS, 4 January 2005
Vol. 102, Issue 1, p. 204-209
DOI: 10.1073/pnas.0406092102

Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis

  1. Philip M. Bauer *,
  2. Jun Yu *,
  3. Yan Chen *,
  4. Reed Hickey ,
  5. Pascal N. Bernatchez *,
  6. Robin Looft-Wilson *,
  7. Yan Huang ,
  8. Frank Giordano ,
  9. Radu V. Stan , and
  10. William C. Sessa * , §
  1. *Departments of Pharmacology and Vascular Cell Signaling and Therapeutics Program, Boyer Center for Molecular Medicine, and Medicine and Cardiovasculate Gene Therapy Program, Yale University School of Medicine, New Haven, CT 06536; and Department of Pathology, Dartmouth Medical School, Lebanon, NH 03756
  1. Edited by Louis J. Ignarro, University of California School of Medicine, Los Angeles, CA (received for review August 18, 2004)


The functions of caveolae and/or caveolins in intact animals are beginning to be explored. Here, by using endothelial cell-specific transgenesis of the caveolin-1 (Cav-1) gene in mice, we show the critical role of Cav-1 in several postnatal vascular paradigms. First, increasing levels of Cav-1 do not increase caveolae number in the endothelium in vivo. Second, despite a lack of quantitative changes in organelle number, endothelial-specific expression of Cav-1 impairs endothelial nitric oxide synthase activation, endothelial barrier function, and angiogenic responses to exogenous VEGF and tissue ischemia. In addition, VEGF-mediated phosphorylation of Akt and its substrate, endothelial nitric oxide synthase, were significantly reduced in VEGF-treated Cav-1 transgenic mice, compared with WT littermates. The inhibitory effect of Cav-1 expression on the Akt-endothelial nitric oxide synthase pathway was specific because VEGF-stimulated phosphorylation of mitogen-activated protein kinase (ERK1/2) was elevated in the Cav-1 transgenics, compared with littermates. These data strongly support the idea that, in vivo, Cav-1 may modulate signaling pathways independent of its essential role in caveolae biogenesis.

  • nitric oxide
  • caveolae
  • VEGF
  • signal transduction


  • § To whom correspondence should be addressed. E-mail: william.sessa{at}

  • Author contributions: R.H., F.G., and W.C.S. designed research; P.M.B., J.Y., Y.C., P.N.B., R.L.-W., Y.H., and R.V.S. performed research; P.M.B., R.V.S., and W.C.S. analyzed data; and W.C.S. wrote the paper.

  • This paper was submitted directly (Track II) to the PNAS office.

  • Abbreviations: TG, transgenic; Cav, caveolin; NO, nitric oxide; eNOS, endothelial NO synthase; PE, phenylephrine; ACh, acetylcholine; L-NAME, l-nitro arginine methyl ester; RT, room temperature; PECAM, platelet-endothelial cell adhesion molecule.


P. M. Bauer, J. Yu, Y. Chen, R. Hickey, P. N. Bernatchez, R. Looft-Wilson, Y. Huang, F. Giordano, R. V. Stan, and W. C. Sessa, Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis. PNAS 102, 204-209 (2005).

Sphingolipids affect fibrinogen-induced caveolar transcytosis and cerebrovascular permeability
N. Muradashvili, S. J. Khundmiri, R. Tyagi, A. Gartung, W. L. Dean, M.-J. Lee, and D. Lominadze
Am. J. Physiol. Cell Physiol. 307, C169-C179 (15 July 2014)

The Genetics of Pulmonary Arterial Hypertension
E. D. Austin, and J. E. Loyd
Circ. Res. 115, 189-202 (20 June 2014)

Differential effects of glyoxalase 1 overexpression on diabetic atherosclerosis and renal dysfunction in streptozotocin-treated, apolipoprotein E-deficient mice
M. Geoffrion, X. Du, Z. Irshad, B. C. Vanderhyden, K. Courville, G. Sui, V. D. D'Agati, S. Ott-Braschi, N. Rabbani, P. J. Thornalley et al.
PHY2 2, e12043-e12043 (11 June 2014)

Deciphering the Binding of Caveolin-1 to Client Protein Endothelial Nitric-oxide Synthase (eNOS): SCAFFOLDING SUBDOMAIN IDENTIFICATION, INTERACTION MODELING, AND BIOLOGICAL SIGNIFICANCE
A. E. Trane, D. Pavlov, A. Sharma, U. Saqib, K. Lau, F. van Petegem, R. D. Minshall, L. J. Roman, and P. N. Bernatchez
J Biol Chem 289, 13273-13283 (9 May 2014)

Adiponectin Inhibits Tumor Necrosis Factor-{alpha}-Induced Vascular Inflammatory Response via Caveolin-Mediated Ceramidase Recruitment and Activation
Y. Wang, X. Wang, W. B. Lau, Y. Yuan, D. Booth, J.-J. Li, R. Scalia, K. Preston, E. Gao, W. Koch et al.
Circ. Res. 114, 792-805 (28 February 2014)

Dexamethasone induces caveolin-1 in vascular endothelial cells: implications for attenuated responses to VEGF
J. Igarashi, T. Hashimoto, K. Shoji, K. Yoneda, I. Tsukamoto, T. Moriue, Y. Kubota, and H. Kosaka
Am. J. Physiol. Cell Physiol. 304, C790-C800 (15 April 2013)

Signal Transduction by Vascular Endothelial Growth Factor Receptors
S. Koch, and L. Claesson-Welsh
Cold Spring Harb Perspect Med 2, a006502-a006502 (1 July 2012)

Activated CD47 promotes pulmonary arterial hypertension through targeting caveolin-1
P. M. Bauer, E. M. Bauer, N. M. Rogers, M. Yao, M. Feijoo-Cuaresma, J. M. Pilewski, H. C. Champion, B. S. Zuckerbraun, M. J. Calzada, J. S. Isenberg et al.
Cardiovasc Res 93, 682-693 (15 March 2012)

Caveolin-1 opens endothelial cell junctions by targeting catenins
R. Kronstein, J. Seebach, S. Grossklaus, C. Minten, B. Engelhardt, M. Drab, S. Liebner, Y. Arsenijevic, A. A. Taha, T. Afanasieva et al.
Cardiovasc Res 93, 130-140 (1 January 2012)

Differential Impact of Caveolae and Caveolin-1 Scaffolds on The Membrane Raft Proteome
Y. Z. Zheng, C. Boscher, K. L. Inder, M. Fairbank, D. Loo, M. M. Hill, I. R. Nabi, and L. J. Foster
MCP 10, M110.007146-M110.007146 (1 October 2011)

Suppression of eNOS-derived superoxide by caveolin-1: a biopterin-dependent mechanism
K. Karuppiah, L. J. Druhan, C.-a. Chen, T. Smith, J. L. Zweier, W. C. Sessa, and A. J. Cardounel
Am. J. Physiol. Heart Circ. Physiol. 301, H903-H911 (1 September 2011)

Signal transduction by vascular endothelial growth factor receptors
S. Koch, S. Tugues, X. Li, L. Gualandi, and L. Claesson-Welsh
Biochem. J. 437, 169-183 (15 July 2011)

A. Davalos, C. Fernandez-Hernando, G. Sowa, B. Derakhshan, M. I. Lin, J. Y. Lee, H. Zhao, R. Luo, C. Colangelo, W. C. Sessa et al.
MCP 9, 2109-2124 (1 October 2010)

Platelet-activating factor reduces endothelial nitric oxide production: role of acid sphingomyelinase
Y. Yang, J. Yin, W. Baumgartner, R. Samapati, E. A. Solymosi, E. Reppien, W. M. Kuebler, and S. Uhlig
Eur Respir J 36, 417-427 (1 August 2010)

Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation
J. H. Chidlow, and W. C. Sessa
Cardiovasc Res 86, 219-225 (1 May 2010)

Thrombospondin-1 modulates vascular endothelial growth factor activity at the receptor level
X. Zhang, S. Kazerounian, M. Duquette, C. Perruzzi, J. A. Nagy, H. F. Dvorak, S. Parangi, and J. Lawler
FASEB J. 23, 3368-3376 (1 October 2009)

The Akt1-eNOS Axis Illustrates the Specificity of Kinase-Substrate Relationships in Vivo
M. Schleicher, J. Yu, T. Murata, B. Derakhshan, D. Atochin, L. Qian, S. Kashiwagi, A. Di Lorenzo, K. D. Harrison, P. L. Huang et al.
Sci Signal 2, ra41-ra41 (4 August 2009)

Venous and Arterial Identity: A Role for Caveolae?
M. Rivera, A. Muto, A. Feigel, Y. Kondo, and A. Dardik
Vascular 17, S10-S14 (1 June 2009)

Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane
P. Lajoie, J. G. Goetz, J. W. Dennis, and I. R. Nabi
JCB 185, 381-385 (4 May 2009)

Hypoxia Modulation of Caveolin-1 and Vascular Endothelial Growth Factor in Ovine Fetal Membranes
C. Y. Cheung, and R. A. Brace
Reproductive Sciences 15, 469-476 (1 May 2008)

Role of NF-{kappa}B-dependent Caveolin-1 Expression in the Mechanism of Increased Endothelial Permeability Induced by Lipopolysaccharide
C. Tiruppathi, J. Shimizu, K. Miyawaki-Shimizu, S. M. Vogel, A. M. Bair, R. D. Minshall, D. Predescu, and A. B. Malik
J Biol Chem 283, 4210-4218 (15 February 2008)

Plasma membrane domain organization regulates EGFR signaling in tumor cells
P. Lajoie, E. A. Partridge, G. Guay, J. G. Goetz, J. Pawling, A. Lagana, B. Joshi, J. W. Dennis, and I. R. Nabi
JCB 179, 341-356 (22 October 2007)

Molecular determinants of endothelial transcytosis and their role in endothelial permeability
S. A. Predescu, D. N. Predescu, and A. B. Malik
Am. J. Physiol. Lung Cell. Mol. Physiol. 293, L823-L842 (1 October 2007)

Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice
T. Murata, M. I. Lin, Y. Huang, J. Yu, P. M. Bauer, F. J. Giordano, and W. C. Sessa
JEM 204, 2373-2382 (1 October 2007)

Genetic Evidence Supporting Caveolae Microdomain Regulation of Calcium Entry in Endothelial Cells
T. Murata, M. I. Lin, R. V. Stan, P. M. Bauer, J. Yu, and W. C. Sessa
J Biol Chem 282, 16631-16643 (1 June 2007)

Caveolin-1 regulates expression of junction-associated proteins in brain microvascular endothelial cells
L. Song, S. Ge, and J. S. Pachter
Blood 109, 1515-1523 (15 February 2007)

Spatial segregation of transport and signalling functions between human endothelial caveolae and lipid raft proteomes
R. R. Sprenger, R. D. Fontijn, J. van Marle, H. Pannekoek, and A. J. G. Horrevoets
Biochem. J. 400, 401-410 (15 December 2006)

Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments
M. G. Lampugnani, F. Orsenigo, M. C. Gagliani, C. Tacchetti, and E. Dejana
JCB 174, 593-604 (14 August 2006)

Caveolin-1 is required for signaling and membrane targeting of EphB1 receptor tyrosine kinase
M. M. Vihanto, C. Vindis, V. Djonov, D. P. Cerretti, and U. Huynh-Do
J. Cell Sci. 119, 2299-2309 (1 June 2006)

Caveolin Plays a Central Role in Endothelial Progenitor Cell Mobilization and Homing in SDF-1-Driven Postischemic Vasculogenesis
E. Sbaa, J. DeWever, P. Martinive, C. Bouzin, F. Frerart, J.-L. Balligand, C. Dessy, and O. Feron
Circ. Res. 98, 1219-1227 (12 May 2006)

Vesicular Trafficking of Tyrosine Kinase Receptors and Associated Proteins in the Regulation of Signaling and Vascular Function
S. Mukherjee, M. Tessema, and A. Wandinger-Ness
Circ. Res. 98, 743-756 (31 March 2006)

siRNA-induced caveolin-1 knockdown in mice increases lung vascular permeability via the junctional pathway
K. Miyawaki-Shimizu, D. Predescu, J. Shimizu, M. Broman, S. Predescu, and A. B. Malik
Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L405-L413 (1 February 2006)

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882