Error message

No crossref credentials set for sci

Reversal and Stabilization of Synaptic Modifications in a Developing Visual System

Science, 20 June 2003
Vol. 300, Issue 5627, p. 1953-1957
DOI: 10.1126/science.1082212

Reversal and Stabilization of Synaptic Modifications in a Developing Visual System

  1. Qiang Zhou,
  2. Huizhong W. Tao,
  3. Mu-ming Poo*
  1. Division of Neurobiology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720–3200, USA.
  1. * To whom correspondence should be addressed. E-mail: mpoo{at}uclink.berkeley.edu

Abstract

Persistent synaptic modifications are essential for experience-dependent refinement of developing circuits. However, in the developing Xenopus retinotectal system, activity-induced synaptic modifications were quickly reversed either by subsequent spontaneous activity in the tectum or by exposure to random visual inputs. This reversal depended on the burst spiking and activation of the N-methyl-D-aspartate subtype of glutamate receptors. Stabilization of synaptic modifications can be achieved by an appropriately spaced pattern of induction stimuli. These findings underscore the vulnerable nature of activity-induced synaptic modifications in vivo and suggest a temporal constraint on the pattern of visual inputs for effective induction of stable synaptic modifications.

  • Received for publication 9 January 2003.
  • Accepted for publication 30 April 2003.

Citation:

Q. Zhou, H. W. Tao, and M.-m. Poo, Reversal and Stabilization of Synaptic Modifications in a Developing Visual System. Science 300, 1953-1957 (2003).

Spaced Noninvasive Brain Stimulation: Prospects for Inducing Long-Lasting Human Cortical Plasticity
M. R. Goldsworthy, J. B. Pitcher, and M. C. Ridding
Neurorehabil Neural Repair 0, 1545968314562649v1-1545968314562649 (11 December 2014)

Resistant Against De-depression: LTD-Like Plasticity in the Human Motor Cortex Induced by Spaced cTBS
M. R. Goldsworthy, F. Muller-Dahlhaus, M. C. Ridding, and U. Ziemann
Cereb Cortex 0, bht353v1-bht353 (31 January 2014)

Modification of Visual Cortical Receptive Field Induced by Natural Stimuli
Y. Zhu, and H. Yao
Cereb Cortex 23, 1923-1932 (1 August 2013)

Initiation, Labile, and Stabilization Phases of Experience-Dependent Plasticity at Neocortical Synapses
J. A. Wen, M. C. DeBlois, and A. L. Barth
J. Neurosci. 33, 8483-8493 (8 May 2013)

Nucleus basalis-enabled stimulus-specific plasticity in the visual cortex is mediated by astrocytes
N. Chen, H. Sugihara, J. Sharma, G. Perea, J. Petravicz, C. Le, and M. Sur
Proc. Natl. Acad. Sci. USA 109, E2832-E2841 (9 October 2012)

Stable Learning in Stochastic Network States
S. El Boustani, P. Yger, Y. Fregnac, and A. Destexhe
J. Neurosci. 32, 194-214 (4 January 2012)

Postinduction Requirement of NMDA Receptor Activation for Late-Phase Long-Term Potentiation of Developing Retinotectal Synapses In Vivo
L.-q. Gong, L.-j. He, Z.-y. Dong, X.-h. Lu, M.-m. Poo, and X.-h. Zhang
J. Neurosci. 31, 3328-3335 (2 March 2011)

Ras and Rap Signaling in Synaptic Plasticity and Mental Disorders
R. L. Stornetta, and J. J. Zhu
Neuroscientist 17, 54-78 (1 February 2011)

Reactivation of Fear Memory Renders Consolidated Amygdala Synapses Labile
J. Kim, B. Song, I. Hong, J. Kim, J. Lee, S. Park, J. Yong Eom, C. J. Lee, S. Lee, S. Choi et al.
J. Neurosci. 30, 9631-9640 (14 July 2010)

"Slow Activity Transients" in Infant Rat Visual Cortex:A Spreading Synchronous Oscillation Patterned by Retinal Waves
M. T. Colonnese, and R. Khazipov
J. Neurosci. 30, 4325-4337 (24 March 2010)

Long-range retrograde spread of LTP and LTD from optic tectum to retina
J.-l. Du, H.-p. Wei, Z.-r. Wang, S. T. Wong, and M.-m. Poo
Proc. Natl. Acad. Sci. USA 106, 18890-18896 (10 November 2009)

Input Specificity and Dependence of Spike Timing-Dependent Plasticity on Preceding Postsynaptic Activity at Unitary Connections between Neocortical Layer 2/3 Pyramidal Cells
M. Zilberter, C. Holmgren, I. Shemer, G. Silberberg, S. Grillner, T. Harkany, and Y. Zilberter
Cereb Cortex 19, 2308-2320 (1 October 2009)

Memory Retention and Spike-Timing-Dependent Plasticity
G. Billings, and M. C. W. van Rossum
J. Neurophysiol. 101, 2775-2788 (1 June 2009)

Voluntary movement and repetitive transcranial magnetic stimulation over human motor cortex
G. Todd, N. C. Rogasch, S. C. Flavel, and M. C. Ridding
J. Appl. Physiol. 106, 1593-1603 (1 May 2009)

Stimulus-Timing-Dependent Plasticity of Cortical Frequency Representation
J. C. Dahmen, D. E. H. Hartley, and A. J. King
J. Neurosci. 28, 13629-13639 (10 December 2008)

Spine Expansion and Stabilization Associated with Long-Term Potentiation
Y. Yang, X.-b. Wang, M. Frerking, and Q. Zhou
J. Neurosci. 28, 5740-5751 (28 May 2008)

Effect of Physiological Activity on an NMDA-Dependent Form of Cortical Plasticity in Human
Y.-Z. Huang, J. C. Rothwell, M. J. Edwards, and R.-S. Chen
Cereb Cortex 18, 563-570 (1 March 2008)

Endocannabinoid Signaling Mediates Cocaine-Induced Inhibitory Synaptic Plasticity in Midbrain Dopamine Neurons
B. Pan, C. J. Hillard, and Q.-s. Liu
J. Neurosci. 28, 1385-1397 (6 February 2008)

Conversion of Functional Synapses into Silent Synapses in the Trigeminal Brainstem after Neonatal Peripheral Nerve Transection
F.-S. Lo, and R. S. Erzurumlu
J. Neurosci. 27, 4929-4934 (2 May 2007)

Spike Timing-Dependent Synaptic Depression in the In Vivo Barrel Cortex of the Rat
V. Jacob, D. J. Brasier, I. Erchova, D. Feldman, and D. E. Shulz
J. Neurosci. 27, 1271-1284 (7 February 2007)

Intermittent Practice Facilitates Stable Motor Memories.
S. A. Overduin, A. G. Richardson, C. E. Lane, E. Bizzi, and D. Z. Press
J. Neurosci. 26, 11888-11892 (15 November 2006)

Visual Experience Regulates Metabotropic Glutamate Receptor-Mediated Plasticity of AMPA Receptor Synaptic Transmission by Homer1a Induction
K. Van Keuren-Jensen, and H. T. Cline
J. Neurosci. 26, 7575-7580 (19 July 2006)

Spike timing-dependent plasticity: from synapse to perception.
Y. Dan, and M.-M. Poo
Physiol. Rev. 86, 1033-1048 (1 July 2006)

Synaptic basis for whisker deprivation-induced synaptic depression in rat somatosensory cortex.
K. J. Bender, C. B. Allen, V. A. Bender, and D. E. Feldman
J. Neurosci. 26, 4155-4165 (19 April 2006)

BDNF stabilizes synapses and maintains the structural complexity of optic axons in vivo
B. Hu, A. M. Nikolakopoulou, and S. Cohen-Cory
Development 132, 4285-4298 (1 October 2005)

Synaptic Learning Rules, Cortical Circuits, and Visual Function
H. Yao, and Y. Dan
Neuroscientist 11, 206-216 (1 June 2005)

Skilled Motor Learning Does Not Enhance Long-Term Depression in the Motor Cortex In Vivo
J. D. Cohen, and M. A. Castro-Alamancos
J. Neurophysiol. 93, 1486-1497 (1 March 2005)

NEUROSCIENCE: Synaptic Modification by Vision
C. Chiu, and M. Weliky
Science 300, 1890-1891 (20 June 2003)

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882