Error message

No crossref credentials set for sci

Redox Regulation of Germline and Vulval Development in Caenorhabditis elegans

Science, 5 December 2003
Vol. 302, Issue 5651, p. 1779-1782
DOI: 10.1126/science.1087167

Redox Regulation of Germline and Vulval Development in Caenorhabditis elegans

  1. Yukimasa Shibata*,
  2. Robyn Branicky,
  3. Irene Oviedo Landaverde,
  4. Siegfried Hekimi
  1. Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, Québec, Canada, H3A 1B1.
  1. To whom correspondence may be addressed. E-mail: siegfried.hekimi{at}
  • * Present address: RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047, Japan.


In vitro studies have indicated that reactive oxygen species (ROS) and the oxidation of signaling molecules are important mediators of signal transduction. We have identified two pathways by which the altered redox chemistry of the clk-1 mutants of Caenorhabditis elegans acts in vivo on germline development. One pathway depends on the oxidation of an analog of vertebrate low density lipoprotein (LDL) and acts on the germline through the Ack-related tyrosine kinase (ARK-1) kinase and inositol trisphosphate (IP3) signaling. The other pathway is the oncogenic ras signaling pathway, whose action on germline as well as vulval development appears to be modulated by cytoplasmic ROS.

    • Received for publication 23 May 2003.
    • Accepted for publication 6 October 2003.


    Y. Shibata, R. Branicky, I. O. Landaverde, and S. Hekimi, Redox Regulation of Germline and Vulval Development in Caenorhabditis elegans. Science 302, 1779-1782 (2003).

    Origin and Evolution of Yolk Proteins: Expansion and Functional Diversification of Large Lipid Transfer Protein Superfamily
    L. T. Wu, J. H. L. Hui, and K. H. Chu
    Biol. Reprod. 88, 102-102 (1 April 2013)

    Superoxide dismutase is dispensable for normal animal lifespan
    J. M. Van Raamsdonk, and S. Hekimi
    Proc. Natl. Acad. Sci. USA 109, 5785-5790 (10 April 2012)

    Decreased Energy Metabolism Extends Life Span in Caenorhabditis elegans Without Reducing Oxidative Damage
    J. M. Van Raamsdonk, Y. Meng, D. Camp, W. Yang, X. Jia, C. Benard, and S. Hekimi
    Genetics 185, 559-571 (1 June 2010)

    Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans
    T. T. Le, H. M. Duren, M. N. Slipchenko, C.-D. Hu, and J.-X. Cheng
    J. Lipid Res. 51, 672-677 (1 March 2010)

    Evolutionary conservation of drug action on lipoprotein metabolism-related targets
    A. K. Hihi, M.-C. Beauchamp, R. Branicky, A. Desjardins, I. Casanova, M.-P. Guimond, M. Carroll, M. Ethier, I. Kianicka, K. McBride et al.
    J. Lipid Res. 49, 74-83 (1 January 2008)

    A Measurable Increase in Oxidative Damage Due to Reduction in Superoxide Detoxification Fails to Shorten the Life Span of Long-Lived Mitochondrial Mutants of Caenorhabditis elegans
    W. Yang, J. Li, and S. Hekimi
    Genetics 177, 2063-2074 (1 December 2007)

    Molecular diversity and evolution of the large lipid transfer protein superfamily
    M. M. W. Smolenaars, O. Madsen, K. W. Rodenburg, and D. J. Van der Horst
    J. Lipid Res. 48, 489-502 (1 March 2007)

    Uncoupling the Pleiotropic Phenotypes of clk-1 with tRNA Missense Suppressors in Caenorhabditis elegans
    R. Branicky, P. A. T. Nguyen, and S. Hekimi
    Mol. Cell. Biol. 26, 3976-3985 (15 May 2006)

    Specification of muscle neurotransmitter sensitivity by a Paired-like homeodomain protein in Caenorhabditis elegans
    R. Branicky, and S. Hekimi
    Development 132, 4999-5009 (15 November 2005)

    Evolutionary conservation of the clk-1-dependent mechanism of longevity: loss of mclk1 increases cellular fitness and lifespan in mice
    X. Liu, N. Jiang, B. Hughes, E. Bigras, E. Shoubridge, and S. Hekimi
    Genes Dev. 19, 2424-2434 (15 October 2005)

    Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling
    Y. Yang, S. Gehrke, Md. E. Haque, Y. Imai, J. Kosek, L. Yang, M. F. Beal, I. Nishimura, K. Wakamatsu, S. Ito et al.
    Proc. Natl. Acad. Sci. USA 102, 13670-13675 (20 September 2005)

    A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation
    N. K. Lee, Y. G. Choi, J. Y. Baik, S. Y. Han, D.-w. Jeong, Y. S. Bae, N. Kim, and S. Y. Lee
    Blood 106, 852-859 (1 August 2005)

    Microsomal Triglyceride Transfer Protein Promotes the Secretion of Xenopus laevis Vitellogenin A1
    J. A. Sellers, L. Hou, D. R. Schoenberg, S. R. Batistuzzo de Medeiros, W. Wahli, and G. S. Shelness
    J Biol Chem 280, 13902-13905 (8 April 2005)

    Changes in Nuclear Receptor and Vitellogenin Gene Expression in Response to Steroids and Heavy Metal in Caenorhabditis elegans
    A. Novillo, S.-J. Won, C. Li, and I. P. Callard
    Integr. Comp. Biol. 45, 61-71 (1 January 2005)

    Demethoxy-Q, An Intermediate of Coenzyme Q Biosynthesis, Fails to Support Respiration in Saccharomyces cerevisiae and Lacks Antioxidant Activity
    S. Padilla, T. Jonassen, M. A. Jimenez-Hidalgo, D. J. M. Fernandez-Ayala, G. Lopez-Lluch, B. Marbois, P. Navas, C. F. Clarke, and C. Santos-Ocana
    J Biol Chem 279, 25995-26004 (18 June 2004)

    Lack of Peroxisomal Catalase Causes a Progeric Phenotype in Caenorhabditis elegans
    O. I. Petriv, and R. A. Rachubinski
    J Biol Chem 279, 19996-20001 (7 May 2004)

    Oxidation makes a germline
    W. A. Wells, and R. A. Rachubinski
    JCB 164, 9-9 (5 January 2004)

    Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882