Error message

No crossref credentials set for sci

NADP Regulates the Yeast GAL Induction System

Science, 22 February 2008
Vol. 319, Issue 5866, p. 1090-1092
DOI: 10.1126/science.1151903

NADP Regulates the Yeast GAL Induction System

  1. P. Rajesh Kumar1,
  2. Yao Yu2,
  3. Rolf Sternglanz2,
  4. Stephen Albert Johnston3,
  5. Leemor Joshua-Tor1,*
  1. 1 Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY11724, USA.
  2. 2 Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794–5215, USA.
  3. 3 Center for Innovations in Medicine, Biodesign Institute, School of Life Sciences, Arizona State University, Post Office Box 875901, Tempe, AZ 85287–5901, USA.
  1. * To whom correspondence should be addressed. E-mail: leemor{at}


Transcriptional regulation of the galactose-metabolizing genes in Saccharomyces cerevisiae depends on three core proteins: Gal4p, the transcriptional activator that binds to upstream activating DNA sequences (UASGAL); Gal80p, a repressor that binds to the carboxyl terminus of Gal4p and inhibits transcription; and Gal3p, a cytoplasmic transducer that, upon binding galactose and adenosine 5′-triphosphate, relieves Gal80p repression. The current model of induction relies on Gal3p sequestering Gal80p in the cytoplasm. However, the rapid induction of this system implies that there is a missing factor. Our structure of Gal80p in complex with a peptide from the carboxyl-terminal activation domain of Gal4p reveals the existence of a dinucleotide that mediates the interaction between the two. Biochemical and in vivo experiments suggests that nicotinamide adenine dinucleotide phosphate (NADP) plays a key role in the initial induction event.

  • Received for publication 18 October 2007.
  • Accepted for publication 4 January 2008.


P. R. Kumar, Y. Yu, R. Sternglanz, S. A. Johnston, and L. Joshua-Tor, NADP Regulates the Yeast GAL Induction System. Science 319, 1090-1092 (2008).

Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae
M. Conrad, J. Schothorst, H. N. Kankipati, G. Van Zeebroeck, M. Rubio-Texeira, and J. M. Thevelein
FEMS Microbiol Rev 38, 254-299 (1 March 2014)

Self-Association of the Gal4 Inhibitor Protein Gal80 Is Impaired by Gal3: Evidence for a New Mechanism in the GAL Gene Switch
O. Egriboz, S. Goswami, X. Tao, K. Dotts, C. Schaeffer, V. Pilauri, and J. E. Hopper
Mol. Cell. Biol. 33, 3667-3674 (15 September 2013)

Intracellular NADPH Levels Affect the Oligomeric State of the Glucose 6-Phosphate Dehydrogenase
M. Saliola, A. Tramonti, C. Lanini, S. Cialfi, D. De Biase, and C. Falcone
Eukaryot Cell 11, 1503-1511 (1 December 2012)

Interplay of a Ligand Sensor and an Enzyme in Controlling Expression of the Saccharomyces cerevisiae GAL Genes
D. Abramczyk, S. Holden, C. J. Page, and R. J. Reece
Eukaryot Cell 11, 334-342 (1 March 2012)

The Gal3p transducer of the GAL regulon interacts with the Gal80p repressor in its ligand-induced closed conformation
T. Lavy, P. R. Kumar, H. He, and L. Joshua-Tor
Genes Dev. 26, 294-303 (1 February 2012)

The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein
K. H. Wong, and K. Struhl
Genes Dev. 25, 2525-2539 (1 December 2011)

Rapid GAL Gene Switch of Saccharomyces cerevisiae Depends on Nuclear Gal3, Not Nucleocytoplasmic Trafficking of Gal3 and Gal80
O. Egriboz, F. Jiang, and J. E. Hopper
Genetics 189, 825-836 (1 November 2011)

An NADPH-dependent genetic switch regulates plant infection by the rice blast fungus
R. A. Wilson, R. P. Gibson, C. F. Quispe, J. A. Littlechild, and N. J. Talbot
Proc. Natl. Acad. Sci. USA 107, 21902-21907 (14 December 2010)

Rewiring and regulation of cross-compartmentalized metabolism in protists
M. L. Ginger, G. I. McFadden, and P. A. M. Michels
Phil Trans R Soc B 365, 831-845 (12 March 2010)

The Effect of Ligand Binding on the Galactokinase Activity of Yeast Gal1p and Its Ability to Activate Transcription
C. A. Sellick, T. A. Jowitt, and R. J. Reece
J Biol Chem 284, 229-236 (2 January 2009)

The Interaction between an Acidic Transcriptional Activator and Its Inhibitor: THE MOLECULAR BASIS OF Gal4p RECOGNITION BY Gal80p
J. B. Thoden, L. A. Ryan, R. J. Reece, and H. M. Holden
J Biol Chem 283, 30266-30272 (31 October 2008)

Metabolic control of transcription: paradigms and lessons from Saccharomyces cerevisiae
R. N. Campbell, M. K. Leverentz, L. A. Ryan, and R. J. Reece
Biochem. J. 414, 177-187 (1 September 2008)

Progress in Metabolic Engineering of Saccharomyces cerevisiae
E. Nevoigt, M. K. Leverentz, L. A. Ryan, and R. J. Reece
Microbiol. Mol. Biol. Rev. 72, 379-412 (1 September 2008)

Dinucleotide-Sensing Proteins: Linking Signaling Networks and Regulating Transcription
H. K. Lamb, D. K. Stammers, and A. R. Hawkins
Sci Signal 1, pe38-pe38 (19 August 2008)

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882