Error message

No crossref credentials set for sci

The Taste of Carbonation

Science, 16 October 2009
Vol. 326, Issue 5951, p. 443-445
DOI: 10.1126/science.1174601

The Taste of Carbonation

  1. Jayaram Chandrashekar1,
  2. David Yarmolinsky1,
  3. Lars von Buchholtz2,
  4. Yuki Oka1,
  5. William Sly3,
  6. Nicholas J. P. Ryba2,
  7. Charles S. Zuker1,*,
  1. 1Howard Hughes Medical Institute and Departments of Neurobiology and Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
  2. 2National Institute of Dental and Craniofacial Research (NIDCR), Bethesda, MD 20892, USA.
  3. 3Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
  1. *Present address: Department of Biochemistry and Molecular Biophysics and Department of Neuroscience, Howard Hughes Medical Institute, Columbia College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.

Abstract

Carbonated beverages are commonly available and immensely popular, but little is known about the cellular and molecular mechanisms underlying the perception of carbonation in the mouth. In mammals, carbonation elicits both somatosensory and chemosensory responses, including activation of taste neurons. We have identified the cellular and molecular substrates for the taste of carbonation. By targeted genetic ablation and the silencing of synapses in defined populations of taste receptor cells, we demonstrated that the sour-sensing cells act as the taste sensors for carbonation, and showed that carbonic anhydrase 4, a glycosylphosphatidylinositol-anchored enzyme, functions as the principal CO2 taste sensor. Together, these studies reveal the basis of the taste of carbonation as well as the contribution of taste cells in the orosensory response to CO2.

  • To whom correspondence should be addressed. E-mail: cz2195{at}columbia.edu

  • Received for publication 6 April 2009.
  • Accepted for publication 17 August 2009.

Citation:

J. Chandrashekar, D. Yarmolinsky, L. von Buchholtz, Y. Oka, W. Sly, N. J. Ryba, and C. S. Zuker, The Taste of Carbonation. Science 326, 443-445 (2009).

Chemical messages in 170-year-old champagne bottles from the Baltic Sea: Revealing tastes from the past
P. Jeandet, S. S. Heinzmann, C. Roullier-Gall, C. Cilindre, A. Aron, M. A. Deville, F. Moritz, T. Karbowiak, D. Demarville, C. Brun et al.
Proc. Natl. Acad. Sci. USA 112, 5893-5898 (12 May 2015)

Taste perception, associated hormonal modulation, and nutrient intake
H. B. Loper, M. La Sala, C. Dotson, and N. Steinle
Nutrition Reviews 73, 83-91 (1 February 2015)

Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo
W. Ren, B. C. Lewandowski, J. Watson, E. Aihara, K. Iwatsuki, A. A. Bachmanov, R. F. Margolskee, and P. Jiang
Proc. Natl. Acad. Sci. USA 111, 16401-16406 (18 November 2014)

Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium
D. Castillo, K. Seidel, E. Salcedo, C. Ahn, F. J. de Sauvage, O. D. Klein, and L. A. Barlow
Development 141, 2993-3002 (1 August 2014)

The Bed Nucleus of the Stria Terminalis Is Critical for Anxiety-Related Behavior Evoked by CO2 and Acidosis
R. J. Taugher, Y. Lu, Y. Wang, C. J. Kreple, A. Ghobbeh, R. Fan, L. P. Sowers, and J. A. Wemmie
J. Neurosci. 34, 10247-10255 (30 July 2014)

Interleukin-10 Is Produced by a Specific Subset of Taste Receptor Cells and Critical for Maintaining Structural Integrity of Mouse Taste Buds
P. Feng, J. Chai, M. Zhou, N. Simon, L. Huang, and H. Wang
J. Neurosci. 34, 2689-2701 (12 February 2014)

Effect of Carbon Dioxide in Carbonated Drinks on Linguapalatal Swallowing Pressure
H. Moritaka, M. Kitade, S.-i. Sawamura, T. Takihara, I. Awano, T. Ono, K. Tamine, and K. Hori
Chem Senses 39, 133-142 (1 February 2014)

Taste Bud Homeostasis in Health, Disease, and Aging
P. Feng, L. Huang, and H. Wang
Chem Senses 39, 3-16 (1 January 2014)

A Chemoreceptor That Detects Molecular Carbon Dioxide
E. S. J. Smith, L. Martinez-Velazquez, and N. Ringstad
J Biol Chem 288, 37071-37081 (27 December 2013)

Temperature Dependence of Ascending Bubble-Driven Flow Patterns Found in Champagne Glasses as Determined through Numerical Modeling
F. Beaumont, C. Popa, G. Liger-Belair, and G. Polidori
Advances in Mechanical Engineering 5, 156430-156430 (1 January 2013)

Examining the Role of Carbonation and Temperature on Water Swallowing Performance: A Swallowing Reaction-Time Study
E. Michou, A. Mastan, S. Ahmed, S. Mistry, and S. Hamdy
Chem Senses 37, 799-807 (1 November 2012)

Elevated Carbon Dioxide Blunts Mammalian cAMP Signaling Dependent on Inositol 1,4,5-Triphosphate Receptor-mediated Ca2+ Release
Z. C. Cook, M. A. Gray, and M. J. Cann
J Biol Chem 287, 26291-26301 (27 July 2012)

Targeted Taste Cell-specific Overexpression of Brain-derived Neurotrophic Factor in Adult Taste Buds Elevates Phosphorylated TrkB Protein Levels in Taste Cells, Increases Taste Bud Size, and Promotes Gustatory Innervation
I. V. Nosrat, R. F. Margolskee, and C. A. Nosrat
J Biol Chem 287, 16791-16800 (11 May 2012)

Molecular Mechanisms of Acid-Base Sensing by the Kidney
D. Brown, and C. A. Wagner
J. Am. Soc. Nephrol. 23, 774-780 (1 May 2012)

Mechanisms of Taste Bud Cell Loss after Head and Neck Irradiation
H. M. Nguyen, M. E. Reyland, and L. A. Barlow
J. Neurosci. 32, 3474-3484 (7 March 2012)

Receptor for Activated C Kinase 1 (RACK1) Inhibits Function of Transient Receptor Potential (TRP)-type Channel Pkd2L1 through Physical Interaction
J. Yang, Q. Wang, W. Zheng, J. Tuli, Q. Li, Y. Wu, S. Hussein, X.-Q. Dai, S. Shafiei, X.-G. Li et al.
J Biol Chem 287, 6551-6561 (24 February 2012)

Comparison of the Orthonasal and Retronasal Detection Thresholds for Carbon Dioxide in Humans
J. Melzner, T. Bitter, O. Guntinas-Lichius, R. Gottschall, M. Walther, and H. Gudziol
Chem Senses 36, 435-441 (1 June 2011)

Involvement of NADPH-Dependent and cAMP-PKA Sensitive H+ Channels in the Chorda Tympani Nerve Responses to Strong Acids
J. A. DeSimone, T.-H. T. Phan, G. L. Heck, Z. Ren, J. Coleman, S. Mummalaneni, P. Melone, and V. Lyall
Chem Senses 36, 389-403 (1 May 2011)

The K+-H+ Exchanger, Nigericin, Modulates Taste Cell pH and Chorda Tympani Taste Nerve Responses to Acidic Stimuli
G. R. Sturz, T.-H. T. Phan, S. Mummalaneni, Z. Ren, J. A. DeSimone, and V. Lyall
Chem Senses 36, 375-388 (1 May 2011)

Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell
S. Xue, H. Hu, A. Ries, E. Merilo, H. Kollist, and J. I. Schroeder
EMBO J. 30, 1645-1658 (20 April 2011)

A proton current drives action potentials in genetically identified sour taste cells
R. B. Chang, H. Waters, and E. R. Liman
Proc. Natl. Acad. Sci. USA 107, 22320-22325 (21 December 2010)

TRPA1 Is a Component of the Nociceptive Response to CO2
Y. Y. Wang, R. B. Chang, and E. R. Liman
J. Neurosci. 30, 12958-12963 (29 September 2010)

Taste Function in Mice with a Targeted Mutation of the Pkd1l3 Gene
T. M. Nelson, N. D. LopezJimenez, L. Tessarollo, M. Inoue, A. A. Bachmanov, and S. L. Sullivan
Chem Senses 35, 565-577 (1 September 2010)

The Search for Mechanisms Underlying the Sour Taste Evoked by Acids Continues
C. D. Dotson, N. D. LopezJimenez, L. Tessarollo, M. Inoue, A. A. Bachmanov, and S. L. Sullivan
Chem Senses 35, 545-547 (1 September 2010)

Review series: The cell biology of taste
N. Chaudhari, and S. D. Roper
JCB 190, 285-296 (9 August 2010)

Highlights From The Literature
S. D. Roper
Physiology 25, 3-7 (1 February 2010)

CO2mmon Sense
W. B. Frommer, and S. D. Roper
Science 327, 275-276 (15 January 2010)

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882