Error message

No crossref credentials set for sci

Astrocytes Control Breathing Through pH-Dependent Release of ATP

Science, 30 July 2010
Vol. 329, Issue 5991, p. 571-575
DOI: 10.1126/science.1190721

Astrocytes Control Breathing Through pH-Dependent Release of ATP

  1. Alexander V. Gourine1,*,
  2. Vitaliy Kasymov1,
  3. Nephtali Marina1,
  4. Feige Tang2,
  5. Melina F. Figueiredo2,
  6. Samantha Lane2,
  7. Anja G. Teschemacher2,
  8. K. Michael Spyer1,
  9. Karl Deisseroth3,
  10. Sergey Kasparov2,*
  1. 1Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK.
  2. 2Department of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK.
  3. 3Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
  1. *To whom correspondence should be addressed. E-mail: a.gourine{at} (A.V.G.); sergey.kasparov{at} (S.K.)
  1. Fig. 1

    Astrocytes residing near the VS are exquisitely pH-sensitive. (A) In vivo imaging of pH-evoked astrocytic [Ca2+]i responses in the ventrolateral area of the brainstem surface transduced with AVV-sGFAP-Case12 in an anesthetized adult rat. (Far right) Changes in VS astrocytic [Ca2+]i in response to a decrease in pH. (Left) Pseudocolored images were taken at times indicated by arrows. Squares indicate regions of interest. Here and elsewhere, the pH bar shows when the solution with lower pH is reaching and starts leaving the preparation. The dashed line outlines the approximate boundary of the RTN. py, pyramidal tract. (B) VS astrocytes identified by means of Case12 fluorescence in a horizontal slice from an adult rat in which the ventral medulla was transduced with AVV-sGFAP-Case12. Acidification induces rapid increases in [Ca2+]i as determined by changes in Case12 fluorescence. The two fluorescent images were obtained (left) before and (right) at the peak of [Ca2+]i response. The circle indicates an astrocyte responding first to pH change in the field of view. The yellow arrow shows the direction of the flow in the chamber. (C) Zoomed-in Ca2+ transients in order to emphasize the latency differences between responses of individual astrocytes shown in (B). (D) No effect of TTX or muscimol on acidification-induced [Ca2+]i responses in VS astrocytes expressed as percentage of the peak initial response. Numbers of individual astrocytes sampled from three to five separate experiments are given in brackets. (E) Acidification-evoked [Ca2+]i responses in VS astrocytes of organotypic brainstem slice transduced with AVV-sGFAP-Case12. The yellow arrow shows the direction of the flow in the chamber. (F) VS vasculature visualized with lectin in a horizontal slice prepared from an AVV-sGFAP-Case12–transduced rat. Arrows point at pH-responsive astrocytes.

  2. Fig. 2

    Exocytotic release of ATP propagates pH-induced Ca2+ excitation among VS astrocytes. (A) A 0.2-unit decrease in pH induces sustained ATP release from the VS as detected with biosensors placed on the pia mater in horizontal slices prepared from adult rats. “netATP” trace represents the difference in signal between ATP and null (control) sensor currents. (B) Apyrase abolishes pH-evoked [Ca2+]i responses in VS astrocytes. Traces illustrate the effects of apyrase on pH-induced changes in Case12 fluorescence of six individual astrocytes (adult rat slice preparation). The decrease in signal is due to acidification-induced quenching of Case12 fluorescence. (C) The effect of MRS2179 on acidification-induced [Ca2+]i responses of eight individual VS astrocytes (organotypic brainstem slice). (D) Bafilomycin A abolishes pH-evoked Ca2+ excitation of VS astrocytes (five individual astrocytes in slice preparation of an adult rat). (E) The effects of apyrase, ATP receptor antagonists, mGlu1a and mGlu5 receptor antagonists (LY367385 and MPEP, 100 μM each), blockers of pannexin/connexin hemichannels and gap junctions lanthanum (100 μM) and carbenoxolone (CBX), or inhibitors of exocytotic mechanisms on acidification-induced [Ca2+]i responses in VS astrocytes expressed as the percentage of the initial response. Numbers of individual astrocytes sampled from three to five separate experiments are given in brackets (*P < 0.05).

  3. Fig. 3

    ATP mediates responses of chemoreceptor neurons to decreases in pH or evoked by selective light-induced Ca2+ excitation of adjacent astrocytes. (A) (Left) Image of the ventral aspect of an organotypic brainstem slice showing EGFP-labeled Phox2b-expressing RTN neurons, one of which is patch clamped. (Right) Time-condensed record of the membrane potential of an RTN neuron responding to acidification in the absence and presence of MRS2179. AP, action potentials (truncated); R, resistance tests using current pulses. (B) Summary of MRS2179 effect on pH-evoked depolarizations in RTN neurons. (C) Effect of MRS2179 on acidification-induced [Ca2+]i responses of RTN neurons from two different experiments (ratiometric imaging using TN-XXL). (Inset) RTN neurons expressing TN-XXL. (D) Summary data showing significant effect of MRS2179 on pH-evoked [Ca2+]i responses of RTN neurons. (E) Layout of AVV-sGFAP-ChR2(H134R)-Katushka1.3. (F) Primary astrocytes displaying increases in [Ca2+]i in response to 470 nm light. (G) Ventral aspect of the organotypic slice showing a recorded DsRed2-labeled RTN neuron surrounded by ChR2(H134R)-Katushka1.3–expressing astrocytes. (H) Membrane potential of two different RTN neurons illustrating their responses to light activation of adjacent ChR2(H134R)-expressing astrocytes in the (left) absence, (middle) presence, or (right) after washout of MRS2179. (I) Effects of MRS2179 on depolarizations of RTN neurons evoked by optogenetic activation of neighboring astrocytes (*P < 0.05).

  4. Fig. 4

    Optogenetic activation of VS astrocytes stimulates breathing in vivo. (A) Unilateral photostimulation of VS astrocytes expressing ChR2(H134R)-Katushka1.3 is sufficient to trigger respiratory activity from hypocapnic apnea in an anesthetized rat. Hypocapnic apnea was induced by means of mechanical hyperventilation to reduce arterial levels of Pco2/[H+] below the apneic threshold. IPNA, integrated phrenic nerve activity; TP, tracheal pressure; ABP, arterial blood pressure. (B) Lasting effect of light activation of VS astrocytes in an animal breathing normally. RR, respiratory rate. (1) and (2) indicate expanded traces of phrenic nerve activity before and after photostimulation of VS astrocytes. (C) Time-condensed record illustrating effects of repeated stimulations of VS astrocytes on phrenic nerve activity before and after a single application of MRS2179 (100 μM, 20 μl) on the VS. Spontaneous recovery of the response over time can be seen. (D) Summary data of MRS2179 effect on the increases in neural minute respiration (the product of phrenic frequency and amplitude) evoked by light activation of VS astrocytes (*P < 0.05). (E) Rostro-caudal distribution of astrocytes expressing ChR2(H134R)-Katushka1.3 in the brainstem of the rat from the experiment shown in (A). 7, facial nucleus; RTN, retrotrapezoid nucleus; C1, catecholaminergic cell group. (F) ChR2(H134R)-Katushka1.3 (Kat 1.3) expression in astrocytes is identified by red fluorescence distributed near the VS in close association with Phox2b-immunoreactive neurons (green nuclei). Shown is the coronal brainstem section. (G) Phox2b-expressing chemoreceptor RTN neurons (red nuclei) embedded in the astrocytic network (astrocytes were transduced with Case12 in this example so as to reveal their morphology).


A. V. Gourine, V. Kasymov, N. Marina, F. Tang, M. F. Figueiredo, S. Lane, A. G. Teschemacher, K. M. Spyer, K. Deisseroth, and S. Kasparov, Astrocytes Control Breathing Through pH-Dependent Release of ATP. Science 329, 571-575 (2010).

High-frequency voltage oscillations in cultured astrocytes
W. Fleischer, S. Theiss, J. Slotta, C. Holland, and A. Schnitzler
PHY2 3, e12400-e12400 (11 May 2015)

Brainstem Hypoxia Contributes to the Development of Hypertension in the Spontaneously Hypertensive Rat
N. Marina, R. Ang, A. Machhada, V. Kasymov, A. Karagiannis, P. S. Hosford, V. Mosienko, A. G. Teschemacher, P. Vihko, J. F. R. Paton et al.
Hypertension 65, 775-783 (1 April 2015)

A Critical Role for Purinergic Signalling in the Mechanisms Underlying Generation of BOLD fMRI Responses
J. A. Wells, I. N. Christie, P. S. Hosford, R. T. R. Huckstepp, P. R. Angelova, P. Vihko, S. C. Cork, A. Y. Abramov, A. G. Teschemacher, S. Kasparov et al.
J. Neurosci. 35, 5284-5292 (1 April 2015)

Astrocyte Calcium Signaling: From Observations to Functions and the Challenges Therein
B. S. Khakh, and K. D. McCarthy
Cold Spring Harb. Perspect. Biol. 7, a020404-a020404 (1 April 2015)

Isoflurane abolishes spontaneous firing of serotonin neurons and masks their pH/CO2 chemosensitivity
C. A. Massey, K. E. Iceman, S. L. Johansen, Y. Wu, M. B. Harris, and G. B. Richerson
J. Neurophysiol. 113, 2879-2888 (1 April 2015)

Role of Astrocytes in Epilepsy
D. A. Coulter, and C. Steinhauser
Cold Spring Harb Perspect Med 5, a022434-a022434 (1 March 2015)

HCN channels contribute to serotonergic modulation of ventral surface chemosensitive neurons and respiratory activity
V. E. Hawkins, J. M. Hawryluk, A. C. Takakura, A. V. Tzingounis, T. S. Moreira, and D. K. Mulkey
J. Neurophysiol. 113, 1195-1205 (15 February 2015)

PAR1-Activated Astrocytes in the Nucleus of the Solitary Tract Stimulate Adjacent Neurons via NMDA Receptors
K. M. Vance, R. C. Rogers, and G. E. Hermann
J. Neurosci. 35, 776-785 (14 January 2015)

Hypoxia Silences Retrotrapezoid Nucleus Respiratory Chemoreceptors via Alkalosis
T. M. Basting, P. G. R. Burke, R. Kanbar, K. E. Viar, D. S. Stornetta, R. L. Stornetta, and P. G. Guyenet
J. Neurosci. 35, 527-543 (14 January 2015)

Molecular Aspects of Structure, Gating, and Physiology of pH-Sensitive Background K2P and Kir K+-Transport Channels
F. V. Sepulveda, L. Pablo Cid, J. Teulon, and M. I. Niemeyer
Physiol. Rev. 95, 179-217 (1 January 2015)

The retrotrapezoid nucleus neurons expressing Atoh1 and Phox2b are essential for the respiratory response to CO2
P.-L. Ruffault, F. D'Autreaux, J. A. Hayes, M. Nomaksteinsky, S. Autran, T. Fujiyama, M. Hoshino, M. Hagglund, O. Kiehn, J.-F. Brunet et al.
elife 4, e07051-e07051 (1 January 2015)

Il-1{beta} and prostaglandin E2 attenuate the hypercapnic as well as the hypoxic respiratory response via prostaglandin E receptor type 3 in neonatal mice
V. Siljehav, Y. Shvarev, and E. Herlenius
J. Appl. Physiol. 117, 1027-1036 (1 November 2014)

Marine teleost locates live prey through pH sensing
J. Caprio, M. Shimohara, T. Marui, S. Harada, and S. Kiyohara
Science 344, 1154-1156 (6 June 2014)

Autocrine regulation of glioma cell proliferation via pHe-sensitive K+ channels
A. Honasoge, K. A. Shelton, and H. Sontheimer
Am. J. Physiol. Cell Physiol. 306, C493-C505 (1 March 2014)

Astrocyte glutamine synthetase: pivotal in health and disease
C. F. Rose, A. Verkhratsky, and V. Parpura
Biochm. Soc. Trans. 41, 1518-1524 (1 December 2013)

Oligodendrocyte Lineage Cells Contribute Unique Features to Rett Syndrome Neuropathology
M. V. C. Nguyen, C. A. Felice, F. Du, M. V. Covey, J. K. Robinson, G. Mandel, and N. Ballas
J. Neurosci. 33, 18764-18774 (27 November 2013)

Astrocytes in the Rat Nucleus Tractus Solitarii Are Critical for Cardiovascular Reflex Control
L.-H. Lin, S. A. Moore, S. Y. Jones, J. McGlashon, and W. T. Talman
J. Neurosci. 33, 18608-18617 (20 November 2013)

Glial cells modulate the synaptic transmission of NTS neurons sending projections to ventral medulla of Wistar rats
D. Accorsi-Mendonca, D. B. Zoccal, L. G. H. Bonagamba, and B. H. Machado
PHY2 1, e00080-e00080 (20 September 2013)

P2Y1 Receptors Expressed by C1 Neurons Determine Peripheral Chemoreceptor Modulation of Breathing, Sympathetic Activity, and Blood Pressure
I. C. Wenker, C. R. Sobrinho, A. C. Takakura, D. K. Mulkey, and T. S. Moreira
Hypertension 62, 263-273 (1 August 2013)

Detection of endogenous substances with enzymatic microelectrode biosensors in the kidney
O. Palygin, and A. Staruschenko
Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R89-R91 (15 July 2013)

pH modulation of glial glutamate transporters regulates synaptic transmission in the nucleus of the solitary tract
R. Huda, D. R. McCrimmon, and M. Martina
J. Neurophysiol. 110, 368-377 (15 July 2013)

Real-time electrochemical detection of ATP and H2O2 release in freshly isolated kidneys
O. Palygin, V. Levchenko, D. V. Ilatovskaya, T. S. Pavlov, R. P. Ryan, A. W. Cowley, and A. Staruschenko
Am. J. Physiol. Renal Physiol. 305, F134-F141 (1 July 2013)

Genetically Encoded Calcium Indicators and Astrocyte Calcium Microdomains
X. Tong, E. Shigetomi, L. L. Looger, and B. S. Khakh
Neuroscientist 19, 274-291 (1 June 2013)

Phox2b-Expressing Retrotrapezoid Neurons Are Intrinsically Responsive to H+ and CO2
S. Wang, Y. Shi, S. Shu, P. G. Guyenet, and D. A. Bayliss
J. Neurosci. 33, 7756-7761 (1 May 2013)

Cardiac optogenetics
E. Entcheva, Y. Shi, S. Shu, P. G. Guyenet, and D. A. Bayliss
Am. J. Physiol. Heart Circ. Physiol. 304, H1179-H1191 (1 May 2013)

Differential Sensitivity of Brainstem versus Cortical Astrocytes to Changes in pH Reveals Functional Regional Specialization of Astroglia
V. Kasymov, O. Larina, C. Castaldo, N. Marina, M. Patrushev, S. Kasparov, and A. V. Gourine
J. Neurosci. 33, 435-441 (9 January 2013)

Cell type-specific and time-dependent light exposure contribute to silencing in neurons expressing Channelrhodopsin-2
A. M. Herman, L. Huang, D. K. Murphey, I. Garcia, and B. R. Arenkiel
elife 3, e01481-e01481 (1 January 2013)

Application of an optogenetic byway for perturbing neuronal activity via glial photostimulation
T. Sasaki, K. Beppu, K. F. Tanaka, Y. Fukazawa, R. Shigemoto, and K. Matsui
Proc. Natl. Acad. Sci. USA 109, 20720-20725 (11 December 2012)

Structural Remodeling of Astrocytes in the Injured CNS
D. Sun, and T. C. Jakobs
Neuroscientist 18, 567-588 (1 December 2012)

General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex
A. S. Thrane, V. Rangroo Thrane, D. Zeppenfeld, N. Lou, Q. Xu, E. A. Nagelhus, and M. Nedergaard
Proc. Natl. Acad. Sci. USA 109, 18974-18979 (13 November 2012)

Purinergic Signaling in the Airways
G. Burnstock, I. Brouns, D. Adriaensen, and J.-P. Timmermans
Pharmacol. Rev. 64, 834-868 (1 October 2012)

Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala
J. Stehberg, R. Moraga-Amaro, C. Salazar, A. Becerra, C. Echeverria, J. A. Orellana, G. Bultynck, R. Ponsaerts, L. Leybaert, F. Simon et al.
FASEB J. 26, 3649-3657 (1 September 2012)

Intercellular Ca2+ Waves: Mechanisms and Function
L. Leybaert, and M. J. Sanderson
Physiol. Rev. 92, 1359-1392 (1 July 2012)

Astrocytes and disease: a neurodevelopmental perspective
A. V. Molofsky, R. Krenick, E. Ullian, H.-h. Tsai, B. Deneen, W. D. Richardson, B. A. Barres, and D. H. Rowitch
Genes Dev. 26, 891-907 (1 May 2012)

Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity
D. Lovatt, Q. Xu, W. Liu, T. Takano, N. A. Smith, J. Schnermann, K. Tieu, and M. Nedergaard
Proc. Natl. Acad. Sci. USA 109, 6265-6270 (17 April 2012)

Glial-derived adenosine modulates spinal motor networks in mice
E. C. Witts, K. M. Panetta, and G. B. Miles
J. Neurophysiol. 107, 1925-1934 (1 April 2012)

Neurological Diseases as Primary Gliopathies: A Reassessment of Neurocentrism
A. Verkhratsky, M. V. Sofroniew, A. Messing, N. C. deLanerolle, D. Rempe, J. J. Rodriguez, and M. Nedergaard
ASN Neuro 4, AN20120010-AN20120010 (1 March 2012)

Nucleus of Tractus Solitarius Astrocytes as Homeostatic Integrators
C. M. Lamy, M. V. Sofroniew, A. Messing, N. C. deLanerolle, D. Rempe, J. J. Rodriguez, and M. Nedergaard
J. Neurosci. 32, 2579-2581 (22 February 2012)

Astroglial Excitability and Gliotransmission: An Appraisal of Ca2+ as a Signalling Route
R. Zorec, A. Araque, G. Carmignoto, P. G. Haydon, A. Verkhratsky, and V. Parpura
ASN Neuro 4, AN20110061-AN20110061 (1 February 2012)

Depletion of Extracellular Ca2+ Prompts Astroglia to Moderate Synaptic Network Activity
D. A. Rusakov, A. Araque, G. Carmignoto, P. G. Haydon, A. Verkhratsky, and V. Parpura
Sci Signal 5, pe4-pe4 (24 January 2012)

Central chemoreceptor modulation of breathing via multipath tuning in medullary ventrolateral respiratory column circuits
M. M. Ott, S. C. Nuding, L. S. Segers, R. O'Connor, K. F. Morris, and B. G. Lindsey
J. Neurophysiol. 107, 603-617 (15 January 2012)

Specific neural substrate linking respiration to locomotion
J.-F. Gariepy, K. Missaghi, S. Chevallier, S. Chartre, M. Robert, F. Auclair, J. P. Lund, and R. Dubuc
Proc. Natl. Acad. Sci. USA 109, E84-E92 (10 January 2012)

Knockout of glial channel ACD-1 exacerbates sensory deficits in a C. elegans mutant by regulating calcium levels of sensory neurons
Y. Wang, G. D'Urso, and L. Bianchi
J. Neurophysiol. 107, 148-158 (1 January 2012)

Phox2b-Expressing Neurons of the Parafacial Region Regulate Breathing Rate, Inspiration, and Expiration in Conscious Rats
S. B. G. Abbott, R. L. Stornetta, M. B. Coates, and P. G. Guyenet
J. Neurosci. 31, 16410-16422 (9 November 2011)

Prostaglandin E2 release from astrocytes triggers gonadotropin-releasing hormone (GnRH) neuron firing via EP2 receptor activation
J. Clasadonte, P. Poulain, N. K. Hanchate, G. Corfas, S. R. Ojeda, and V. Prevot
Proc. Natl. Acad. Sci. USA 108, 16104-16109 (20 September 2011)

Breathing without CO2 Chemosensitivity in Conditional Phox2b Mutants
N. Ramanantsoa, M.-R. Hirsch, M. Thoby-Brisson, V. Dubreuil, J. Bouvier, P.-L. Ruffault, B. Matrot, G. Fortin, J.-F. Brunet, J. Gallego et al.
J. Neurosci. 31, 12880-12888 (7 September 2011)

Control of sympathetic vasomotor tone by catecholaminergic C1 neurones of the rostral ventrolateral medulla oblongata
N. Marina, A. P. L. Abdala, A. Korsak, A. E. Simms, A. M. Allen, J. F. R. Paton, and A. V. Gourine
Cardiovasc Res 91, 703-710 (1 September 2011)

Structural plasticity of perisynaptic astrocyte processes involves ezrin and metabotropic glutamate receptors
M. Lavialle, G. Aumann, E. Anlauf, F. Prols, M. Arpin, and A. Derouiche
Proc. Natl. Acad. Sci. USA 108, 12915-12919 (2 August 2011)

Impaired Respiratory and Body Temperature Control Upon Acute Serotonergic Neuron Inhibition
R. S. Ray, A. E. Corcoran, R. D. Brust, J. C. Kim, G. B. Richerson, E. Nattie, and S. M. Dymecki
Science 333, 637-642 (29 July 2011)

Calcium Triggers Exocytosis from Two Types of Organelles in a Single Astrocyte
T. Liu, L. Sun, Y. Xiong, S. Shang, N. Guo, S. Teng, Y. Wang, B. Liu, C. Wang, L. Wang et al.
J. Neurosci. 31, 10593-10601 (20 July 2011)

Astrocytes Display Complex and Localized Calcium Responses to Single-Neuron Stimulation in the Hippocampus
Y. Bernardinelli, C. Salmon, E. V. Jones, W. T. Farmer, D. Stellwagen, and K. K. Murai
J. Neurosci. 31, 8905-8919 (15 June 2011)

Involvement of TRP channels in the CO2 chemosensitivity of locus coeruleus neurons
N. Cui, X. Zhang, J. S. Tadepalli, L. Yu, H. Gai, J. Petit, R. T. Pamulapati, X. Jin, and C. Jiang
J. Neurophysiol. 105, 2791-2801 (1 June 2011)

Ventrolateral medullary functional connectivity and the respiratory and central chemoreceptor-evoked modulation of retrotrapezoid-parafacial neurons
M. M. Ott, S. C. Nuding, L. S. Segers, B. G. Lindsey, and K. F. Morris
J. Neurophysiol. 105, 2960-2975 (1 June 2011)

Remote Control of Neuronal Signaling
S. C. Rogan, and B. L. Roth
Pharmacol. Rev. 63, 291-315 (1 June 2011)

Control of Breathing by Raphe Obscurus Serotonergic Neurons in Mice
S. D. DePuy, R. Kanbar, M. B. Coates, R. L. Stornetta, and P. G. Guyenet
J. Neurosci. 31, 1981-1990 (9 February 2011)

Low Extracellular pH Induces Damage in the Pancreatic Acinar Cell by Enhancing Calcium Signaling
A. M. Reed, S. Z. Husain, E. Thrower, M. Alexandre, A. Shah, F. S. Gorelick, and M. H. Nathanson
J Biol Chem 286, 1919-1926 (21 January 2011)

Genetic Inactivation of Kcnj16 Identifies Kir5.1 as an Important Determinant of Neuronal PCO2/pH Sensitivity
M. C. D'Adamo, L. Shang, P. Imbrici, S. D. M. Brown, M. Pessia, and S. J. Tucker
J Biol Chem 286, 192-198 (7 January 2011)

Julius H. Comroe, Jr., Distinguished Lecture: Central chemoreception: then ... and now
E. Nattie, L. Shang, P. Imbrici, S. D. M. Brown, M. Pessia, and S. J. Tucker
J. Appl. Physiol. 110, 1-8 (1 January 2011)

Astrocytes in the Retrotrapezoid Nucleus Sense H+ by Inhibition of a Kir4.1-Kir5.1-Like Current and May Contribute to Chemoreception by a Purinergic Mechanism
I. C. Wenker, O. Kreneisz, A. Nishiyama, and D. K. Mulkey
J. Neurophysiol. 104, 3042-3052 (1 December 2010)

Control of Breathing by "Nerve Glue"
K. Ballanyi, B. Panaitescu, and A. Ruangkittisakul
Sci Signal 3, pe41-pe41 (9 November 2010)

Developmental Origin of PreBotzinger Complex Respiratory Neurons
P. A. Gray, J. A. Hayes, G. Y. Ling, I. Llona, S. Tupal, M. C. D. Picardo, S. E. Ross, T. Hirata, J. G. Corbin, J. Eugenin et al.
J. Neurosci. 30, 14883-14895 (3 November 2010)

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882