You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The interaction between the T cell receptor (TCR) and a peptide-loaded major histocompatibility complex (pMHC) is one of the most-studied interactions in immunology, and yet the precise mechanism by which this system operates is still not fully understood. One key issue is whether TCR triggering minimally requires monomeric pMHC complexes or higher-order multimers (two or more pMHCs). Any model of TCR triggering must explain the high sensitivity, specificity, and dynamic range of ligand responsiveness that this receptor system exhibits. Most models of TCR triggering have not fully appreciated the dynamic aspects of TCR triggering. TCR triggering happens very quickly, and the properties of sensitivity and specificity can be explained by a model that accounts for the interaction dynamics of such a receptor system. In this paper, it is proposed that the important parameter in TCR triggering is the immobilization of the TCR-pMHC complex in the plasma membrane. Whether this involves monomeric or multimeric pMHCs may depend on the affinity of the TCR for the pMHC.