You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
In noncontractile cells, a sustained increase in total cytoplasmic Ca2+ concentration is typically needed to activate the intracellular protein phosphatase calcineurin, leading to dephosphorylation of the transcription factor nuclear factor of activated T cells (NFAT), its nuclear translocation, and induction of gene expression. It remains a mystery exactly how Ca2+-dependent signaling pathways, such as that mediated by calcineurin-NFAT, are regulated in contracting cardiac myocytes given the highly specialized manner in which Ca2+ concentration rhythmically cycles in excitation-contraction coupling. Here, we critically review evidence that supports the hypothesis that calcineurin-NFAT signaling is regulated by contractile Ca2+ transients in cardiac myocytes.