You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
T cell receptor (TCR) stimulation results in the influx of Ca2+, which is buffered by mitochondria and promotes adenosine triphosphate (ATP) synthesis. We found that ATP released from activated T cells through pannexin-1 hemichannels activated purinergic P2X receptors (P2XRs) to sustain mitogen-activated protein kinase (MAPK) signaling. P2XR antagonists, such as oxidized ATP (oATP), blunted MAPK activation in stimulated T cells, but did not affect the nuclear translocation of the transcription factor nuclear factor of activated T cells, thus promoting T cell anergy. In vivo administration of oATP blocked the onset of diabetes mediated by anti-islet TCR transgenic T cells and impaired the development of colitogenic T cells in inflammatory bowel disease. Thus, pharmacological inhibition of ATP release and signaling could be beneficial in treating T cell–mediated inflammatory diseases.