Research ArticleImmunology

A disease-linked ULBP6 polymorphism inhibits NKG2D-mediated target cell killing by enhancing the stability of NKG2D ligand binding

See allHide authors and affiliations

Science Signaling  30 May 2017:
Vol. 10, Issue 481, eaai8904
DOI: 10.1126/scisignal.aai8904

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Distracting natural killer cells

Natural killer (NK) cells target virally infected and transformed cells for cytolysis. When sufficient activating receptors on the NK cell surface, such as NKG2D, are engaged by ligands on the target cell, such as ULBP proteins, the NK cell kills the target. Polymorphisms within ULBP-encoding genes are associated with immune dysfunction. Zuo et al. found that the affinity of a commonly occurring ULBP6 variant for NKG2D was greater than that of the wild-type protein, which impaired NK cell activation. A soluble form of this protein variant bound so tightly to NKG2D that it suppressed receptor activation and target cell killing in response to other NKG2D ligands. Together, these data suggest that targeting NK cell–ligand interactions may provide therapies to modulate the strength of immune responses.


NKG2D (natural killer group 2, member D) is an activating receptor found on the surface of immune cells, including natural killer (NK) cells, which regulates innate and adaptive immunity through recognition of the stress-induced ligands ULBP1 (UL16 binding protein 1) to ULBP6 and MICA/B. Similar to class I human leukocyte antigen (HLA), these NKG2D ligands have a major histocompatibility complex–like fold and exhibit pronounced polymorphism, which influences human disease susceptibility. However, whereas class I HLA polymorphisms occur predominantly in the α1α2 groove and affect antigen binding, the effects of most NKG2D ligand polymorphisms are unclear. We studied the molecular and functional consequences of the two major alleles of ULBP6, the most polymorphic ULBP gene, which are associated with autoimmunity and relapse after stem cell transplantation. Surface plasmon resonance and crystallography studies revealed that the arginine-to-leucine polymorphism within ULBP0602 affected the NKG2D-ULBP6 interaction by generating an energetic hotspot. This resulted in an NKG2D-ULBP0602 affinity of 15.5 nM, which is 10- to 1000-fold greater than the affinities of other ULBP-NKG2D interactions and limited NKG2D-mediated activation. In addition, soluble ULBP0602 exhibited high-affinity competitive binding for NKG2D and partially suppressed NKG2D-mediated activation of NK cells by other NKG2D ligands. These effects resulted in a decrease in a range of NKG2D-mediated effector functions. Our results reveal that ULBP polymorphisms affect the strength of human lymphocyte responses to cellular stress signals and may offer opportunities for therapeutic intervention.

View Full Text

Stay Connected to Science Signaling