Research ArticleImmunology

Tumor-derived TGF-β inhibits mitochondrial respiration to suppress IFN-γ production by human CD4+ T cells

See allHide authors and affiliations

Science Signaling  17 Sep 2019:
Vol. 12, Issue 599, eaav3334
DOI: 10.1126/scisignal.aav3334

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Suppressing antitumor immunity

The cytokine TGF-β has both immune-suppressive and tumor-suppressive functions; thus, a better understanding of the cell-type specificity of the effects of TGF-β might improve therapeutic strategies that target it. Dimeloe et al. found that TGF-β from tumor effusions suppressed the antitumor activity of CD4+ T cells by inhibiting their production of the inflammatory cytokine IFN-γ. The effects of TGF-β were mediated by Smad proteins in the mitochondria, rather than in the nucleus, and led to decreased mitochondrial respiration. Indeed, direct inhibition of a mitochondrial electron transport chain complex in CD4+ T cells was sufficient to inhibit IFN-γ production. Thus, these data suggest that TGF-β targets T cell metabolism to suppress antitumor immunity.

Abstract

Transforming growth factor–β (TGF-β) is produced by tumors, and increased amounts of this cytokine in the tumor microenvironment and serum are associated with poor patient survival. TGF-β–mediated suppression of antitumor T cell responses contributes to tumor growth and survival. However, TGF-β also has tumor-suppressive activity; thus, dissecting cell type–specific molecular effects may inform therapeutic strategies targeting this cytokine. Here, using human peripheral and tumor-associated lymphocytes, we investigated how tumor-derived TGF-β suppresses a key antitumor function of CD4+ T cells, interferon-γ (IFN-γ) production. Suppression required the expression and phosphorylation of Smad proteins in the TGF-β signaling pathway, but not their nuclear translocation, and depended on oxygen availability, suggesting a metabolic basis for these effects. Smad proteins were detected in the mitochondria of CD4+ T cells, where they were phosphorylated upon treatment with TGF-β. Phosphorylated Smad proteins were also detected in the mitochondria of isolated tumor-associated lymphocytes. TGF-β substantially impaired the ATP-coupled respiration of CD4+ T cells and specifically inhibited mitochondrial complex V (ATP synthase) activity. Last, inhibition of ATP synthase alone was sufficient to impair IFN-γ production by CD4+ T cells. These results, which have implications for human antitumor immunity, suggest that TGF-β targets T cell metabolism directly, thus diminishing T cell function through metabolic paralysis.

View Full Text

Stay Connected to Science Signaling