You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
A biasing position for GPCRs
GPCRs are the largest class of druggable receptors in the human proteome. Drugs that preferentially activate G protein– or β-arrestin–dependent signaling downstream of GPCRs are less likely to come with unwanted side effects. Using biochemical analyses, Sanchez-Soto et al. identified a specific conserved residue in the ligand binding site for multiple GPCRs that modulate β-arrestin–dependent signaling while minimally affecting that mediated by G proteins. Molecular dynamics simulations showed that mutations in this residue resulted in conformational changes that were expected to allosterically affect the interaction of the receptor with β-arrestin. These findings describe a mechanism by which changes in the ligand binding site of GPCRs can result in biased downstream signaling.
Abstract
Signaling bias is the propensity for some agonists to preferentially stimulate G protein–coupled receptor (GPCR) signaling through one intracellular pathway versus another. We previously identified a G protein–biased agonist of the D2 dopamine receptor (D2R) that results in impaired β-arrestin recruitment. This signaling bias was predicted to arise from unique interactions of the ligand with a hydrophobic pocket at the interface of the second extracellular loop and fifth transmembrane segment of the D2R. Here, we showed that residue Phe189 within this pocket (position 5.38 using Ballesteros-Weinstein numbering) functions as a microswitch for regulating receptor interactions with β-arrestin. This residue is relatively conserved among class A GPCRs, and analogous mutations within other GPCRs similarly impaired β-arrestin recruitment while maintaining G protein signaling. To investigate the mechanism of this signaling bias, we used an active-state structure of the β2-adrenergic receptor (β2R) to build β2R-WT and β2R-Y1995.38A models in complex with the full β2R agonist BI-167107 for molecular dynamics simulations. These analyses identified conformational rearrangements in β2R-Y1995.38A that propagated from the extracellular ligand binding site to the intracellular surface, resulting in a modified orientation of the second intracellular loop in β2R-Y1995.38A, which is predicted to affect its interactions with β-arrestin. Our findings provide a structural basis for how ligand binding site alterations can allosterically affect GPCR-transducer interactions and result in biased signaling.
This is an article distributed under the terms of the Science Journals Default License.