Research ArticleBiochemistry

Crystal structure of the hinge domain of Smchd1 reveals its dimerization mode and nucleic acid–binding residues

See allHide authors and affiliations

Science Signaling  16 Jun 2020:
Vol. 13, Issue 636, eaaz5599
DOI: 10.1126/scisignal.aaz5599

You are currently viewing the editor's summary.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Illuminating dimerization

Proteins of the SMC family are chromosomal organizers involved in sister chromatid cohesion, chromosome condensation, and DNA repair. Unlike other eukaryotic family members, SMCHD1 forms homodimers, rather than heterodimers, and has a distinct domain architecture. Dysregulation of SMCHD1 function results in a form of muscular dystrophy and a developmental disorder. Chen et al. solved the x-ray crystal structure of the Smchd1 hinge domain, which is important for homodimerization and nucleic acid binding. Site-directed mutagenesis studies identified critical residues involved in SMCHD1 function in cells. Together, these data suggest how mutations in the SMCHD1 hinge domain contribute to human disease.

View Full Text

Stay Connected to Science Signaling