You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Cells in the eye of the cytokine storm
The cytokine storm refers to when circulating concentrations of proinflammatory cytokines, such as IL-1β, are greatly increased. The occurrence of cytokine storm syndrome in COVID-19 patients is associated with increased mortality and morbidity. Kothari et al. identified the subtypes and markers of human immune cells that showed the greatest response to IL-1β as assessed primarily by the phosphorylation of the proinflammatory transcription factor NF-κB. These responses were attenuated by anakinra, an antagonist for an IL-1β receptor that is being clinically evaluated to treat cytokine storm syndrome in COVID-19 patients. These data may enable the identification of patients most likely to be afflicted by cytokine storm during COVID-19 infection and other systemic inflammatory syndromes.
Abstract
IL-1β is a key mediator of the cytokine storm linked to high morbidity and mortality from COVID-19, and IL-1β blockade with anakinra and canakinumab during COVID-19 infection has entered clinical trials. Using mass cytometry of human peripheral blood mononuclear cells, we identified effector memory CD4+ T cells and CD4−CD8low/−CD161+ T cells, specifically those positive for the chemokine receptor CCR6, as the circulating immune subtypes with the greatest response to IL-1β. This response manifested as increased phosphorylation and, thus, activation of the proinflammatory transcription factor NF-κB and was also seen in other subsets, including CD11c+ myeloid dendritic cells, classical monocytes, two subsets of natural killer cells (CD16−CD56brightCD161− and CD16−CD56dimCD161+), and lineage− (Lin−) cells expressing CD161 and CD25. IL-1β also induced a rapid but less robust increase in the phosphorylation of the kinase p38 as compared to that of NF-κB in most of these immune cell subsets. Prolonged IL-1β stimulation increased the phosphorylation of the transcription factor STAT3 and to a lesser extent that of STAT1 and STAT5 across various immune cell types. IL-1β–induced production of IL-6 likely led to the activation of STAT1 and STAT3 at later time points. Interindividual heterogeneity and inhibition of STAT activation by anakinra raise the possibility that assays measuring NF-κB phosphorylation in response to IL-1β in CCR6+ T cell subtypes could identify those patients at higher risk of cytokine storm and most likely to benefit from IL-1β–neutralizing therapies.
This is an article distributed under the terms of the Science Journals Default License.