You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Apoptosis is a pivotal process in embryogenesis and postnatal cell homeostasis and involves the shedding of membranous microvesicles termed apoptotic bodies. In response to tissue damage, the CXC chemokine CXCL12 and its receptor CXCR4 counteract apoptosis and recruit progenitor cells. Here, we show that endothelial cell–derived apoptotic bodies are generated during atherosclerosis and convey paracrine alarm signals to recipient vascular cells that trigger the production of CXCL12. CXCL12 production was mediated by microRNA-126 (miR-126), which was enriched in apoptotic bodies and repressed the function of regulator of G protein (heterotrimeric guanosine triphosphate–binding protein) signaling 16, an inhibitor of G protein–coupled receptor (GPCR) signaling. This enabled CXCR4, a GPCR, to trigger an autoregulatory feedback loop that increased the production of CXCL12. Administration of apoptotic bodies or miR-126 limited atherosclerosis, promoted the incorporation of Sca-1+ progenitor cells, and conferred features of plaque stability on different mouse models of atherosclerosis. This study highlights functions of microRNAs in health and disease that may extend to the recruitment of progenitor cells during other forms of tissue repair or homeostasis.