You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Posttranslational modifications of clock proteins are crucial to generating proper circadian rhythms of the correct length and amplitude. Here, we show that the protein kinase CK2 (casein kinase 2) plays a role in regulating the mammalian circadian clock. We found that inhibiting CK2 activity resulted in a decrease in the amplitude and an increase in the period of oscillations in circadian gene expression. CK2 specifically bound and phosphorylated PERIOD2 (PER2) and collaborated with the protein kinase CKIε to promote PER2 degradation. We also identified a CK2 phosphorylation site (serine-53) in PER2, whose phosphorylation played a role in fine-tuning circadian rhythms and regulating PER2 stability but was dispensable for the cooperative effect of CK2 and CKIε. Thus, our study identifies CK2 as a regulatory element of mammalian circadian rhythms and uncovers a role for CK2 in PER2 degradation.