You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Steroid hormones serve as chemical messengers in a wide number of species and target tissues by transmitting signals that result in both genomic and nongenomic responses. Genomic responses are mediated by the formation of a ligand-receptor complex with its cognate steroid hormone nuclear receptor (NR). Nongenomic responses can be mediated at the plasma membrane by a membrane-localized NR. The focus of this Review is on the structural attributes and molecular mechanisms underlying vitamin D sterol (VDS)–vitamin D receptor (VDR) selective and stereospecific regulation of nongenomic and genomic signaling. The VDS-VDR conformational ensemble model describes how VDSs can selectively initiate or block either nongenomic or genomic biological responses by interacting with two VDR ligand-binding pockets, one kinetically favored by 1α,25(OH)2D3 (1,25D) and the other thermodynamically favored. We describe the variables that affect the three major elements of the model: the conformational flexibility of the unliganded (apo) protein, the flexibility of the VDS, and the physicochemical selectivity of the VDR genomic pocket (VDR-GP) and alternative pocket (VDR-AP). We also discuss how these three factors collectively provide a rational explanation for the complexities of VDS regulation of cell biology and highlight the current limitations of the model.