You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The signaling network downstream of the ErbB family of receptors has been extensively targeted by cancer therapeutics; however, understanding the relative importance of the different components of the ErbB network is nontrivial. To explore the optimal way to therapeutically inhibit combinatorial, ligand-induced activation of the ErbB–phosphatidylinositol 3-kinase (PI3K) axis, we built a computational model of the ErbB signaling network that describes the most effective ErbB ligands, as well as known and previously unidentified ErbB inhibitors. Sensitivity analysis identified ErbB3 as the key node in response to ligands that can bind either ErbB3 or EGFR (epidermal growth factor receptor). We describe MM-121, a human monoclonal antibody that halts the growth of tumor xenografts in mice and, consistent with model-simulated inhibitor data, potently inhibits ErbB3 phosphorylation in a manner distinct from that of other ErbB-targeted therapies. MM-121, a previously unidentified anticancer therapeutic designed using a systems approach, promises to benefit patients with combinatorial, ligand-induced activation of the ErbB signaling network that are not effectively treated by current therapies targeting overexpressed or mutated oncogenes.