You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Inositol 1,4,5-trisphosphate (IP3) is generally viewed as a global messenger that increases cytosolic calcium ion (Ca2+) concentration. However, the spatiotemporal dynamics of IP3 and the functional significance of localized IP3 production in cell polarity remain largely unknown. Here, we demonstrate the critical role of spatially restricted IP3 signals in axon guidance. We found that IP3 and ensuing Ca2+ signals were produced asymmetrically across growth cones exposed to an extracellular gradient of nerve growth factor (NGF) and mediated growth cone turning responses to NGF. Moreover, photolysis-induced production of IP3 on one side of a growth cone was sufficient to initiate growth cone turning toward the side with the higher concentration of IP3. Thus, locally produced IP3 encodes spatial information that polarizes the growth cone for guided migration.