You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Suppressor of cytokine signaling–1 (SOCS1) is an intracellular inhibitor of the Janus kinase–signal transducer and activator of transcription (JAK-STAT) pathway that couples interferon-γ (IFN-γ) signaling to the nucleus. Because several inflammatory diseases are associated with uncontrolled IFN-γ signaling, we engineered a recombinant cell-penetrating SOCS1 (CP-SOCS1) to target this pathway. Here, we show that CP-SOCS1, analogous to endogenous SOCS1, interacted with components of the IFN-γ signaling complex and functionally attenuated the phosphorylation of STAT1, which resulted in the subsequent inhibition of the production of proinflammatory chemokines and cytokines. Thus, controlled, intracellular delivery of recombinant CP-SOCS1 boosted the anti-inflammatory potential of the cell by restoring the homeostatic balance between pro- and anti-inflammatory signaling. This approach to controlling signal transduction has potential use for therapeutic targeting of signaling pathways associated with inflammatory diseases.