You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Ubiquitously expressed protein kinase D (PKD) isoforms are poised to disseminate signals carried by diacylglycerol (DAG). However, the in vivo regulation and functions of PKDs are poorly understood. We show that the Caenorhabditis elegans gene, dkf-2, encodes not just DKF-2A, but also a second previously unknown isoform, DKF-2B. Whereas DKF-2A is present mainly in intestine, we show that DKF-2B is found in neurons. Characterization of dkf-2 null mutants and transgenic animals expressing DKF-2B, DKF-2A, or both isoforms revealed that PKDs couple DAG signals to regulation of sodium ion (Na+)–induced learning. EGL-8 (a phospholipase Cβ4 homolog) and TPA-1 (a protein kinase Cδ homolog) are upstream regulators of DKF-2 isoforms in vivo. Thus, pathways containing EGL-8–TPA-1–DKF-2 enable learning and behavioral plasticity by receiving, transmitting, and cooperatively integrating environmental signals targeted to both neurons and intestine.