You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The cytokine interleukin-1 (IL-1) mediates immune and inflammatory responses by activating the transcription factor nuclear factor κB (NF-κB). Although transforming growth factor–β–activated kinase 1 (TAK1) and mitogen-activated protein kinase (MAPK) kinase kinase 3 (MEKK3) are both crucial for IL-1–dependent activation of NF-κB, their potential functional and physical interactions remain unclear. Here, we showed that TAK1-mediated activation of NF-κB required the transient formation of a signaling complex that included tumor necrosis factor receptor–associated factor 6 (TRAF6), MEKK3, and TAK1. Site-specific, lysine 63–linked polyubiquitination of TAK1 at lysine 209, likely catalyzed by TRAF6 and Ubc13, was required for the formation of this complex. After TAK1-mediated activation of NF-κB, TRAF6 subsequently activated NF-κB through MEKK3 independently of TAK1, thereby establishing continuous activation of NF-κB, which was required for the production of sufficient cytokines. Therefore, we propose that the cooperative activation of NF-κB by two mechanistically and temporally distinct MEKK3-dependent pathways that diverge at TRAF6 critically contributes to immune and inflammatory systems.