You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The Rho family of guanosine triphosphatases (GTPases) are essential eukaryotic signaling molecules that regulate cellular physiology. Virulence factors from various pathogens alter the signaling of GTPases by acting as GTPase activating factors, guanine nucleotide exchange factors, or direct covalent modifiers; however, bacterial virulence factors that sense rather than alter the signaling states of Rho GTPases have not been previously described. Here, we report that the translocated Salmonellae virulence factor SseJ binds to the guanosine triphosphate–bound form of RhoA. This interaction stimulates the lipase activity of SseJ, which results in the esterification of cholesterol in the host cell membrane. Our results suggest that the activation of molecules downstream of GTPases is not exclusive to eukaryotic proteins, and that a bacterial protein has evolved to recognize the activation state of RhoA, which regulates its enzymatic activity as part of the host-pathogen interaction.