You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Brown adipose tissue (BAT) is a primary site of energy expenditure through thermogenesis, which is mediated by the uncoupling protein–1 (UCP-1) in mitochondria. Here, we show that protein kinase G (PKG) is essential for brown fat cell differentiation. Induction of adipogenic markers and fat storage was impaired in the absence of PKGI. Furthermore, PKGI mediated the ability of nitric oxide (NO) and guanosine 3′,5′-monophosphate (cGMP) to induce mitochondrial biogenesis and increase the abundance of UCP-1. Mechanistically, we found that PKGI controlled insulin signaling in BAT by inhibiting the activity of RhoA and Rho-associated kinase (ROCK), thereby relieving the inhibitory effects of ROCK on insulin receptor substrate–1 and activating the downstream phosphoinositide 3-kinase–Akt cascade. Thus, PKGI links NO and cGMP signaling with the RhoA-ROCK and the insulin pathways, thereby controlling induction of adipogenic and thermogenic programs during brown fat cell differentiation.