You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
A challenge for biomedical scientists today is to arrive at an understanding of cellular behavior on a global scale. The advent of DNA microarrays has greatly facilitated discovery of gene expression profiles associated with different cellular states. The problem of understanding cellular signaling at the level of the interacting proteins is in some ways more challenging. Ashman et al. discuss the current methods available for studying protein interactions on a global scale, as well as directions for the future. Technical hurdles exist at many stages, from the isolation of protein complexes, to the determination of their composition, to the software and databases needed to analyze the results of large-scale, high-throughput datasets. Ashman et al. suggest that, with advances in technology and cooperation among academia and industry, a global protein interaction map that underlies cellular behavior will emerge as an essential resource for basic and applied research.