You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Helmann discusses the controversy surrounding the activation of the bacterial redox-regulated transcription factor OxyR. Evidence from different sources, including crystallographic data, has led to opposing models for the chemical changes that activate OxyR. Is it an intramolecular disulfide-linkage? Is it oxidation of a single cysteine residue to a sulfenic acid? Are there different active forms depending on the type of cysteine modification: intramolecular disulfide bond, sulfenic acid, S-nitrosothiol, or mixed disulfide with glutathione? These issues are discussed in the broader context of transcriptional regulation and how particular regulators may activate distinct genetic programs depending on the precise state of the regulator produced in response to environmental cues.