You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Extracellular signal–regulated kinases (ERKs) are traditionally viewed as a survival factor in the mitogen-activated protein kinase (MAPK) family. On the other hand, some recent reports have suggested that ERK can also be responsible for neuronal cell death in various neurodegeneration models. In-depth studies on the action of ERK in apoptosis, however, have not been done. A recent study has revealed that ERK is a key apoptotic factor in potassium deprivation–induced neuronal cell death by showing that ERK inhibitors protect neurons from low potassium conditions, whereas constitutively activated ERK activates cell death. Most important, this study shows how ERK can promote neuronal cell death by causing plasma membrane and DNA damage that is independent of caspase-3 activity. Further studies on the mechanism of ERK in neuronal cell death will shed light on the possibility of using ERK as a therapeutic target in treating neurodegeneration.