You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
With a better understanding of the cellular stress response, it has become evident that catalytic modules consisting of kinases that mediate the activation of downstream effector components are subject to multiple layers of regulation. Such regulatory mechanisms are not limited to those involving scaffold proteins or protein phosphatases, and they appear to include a growing number of modifications by ubiquitin and ubiquitin-like proteins. The role of ubiquitin in the regulation of mitogen-activated protein kinase (MAPK) emerges as a paradigm for understanding the role of ubiquitination in regulating other signal transduction pathways. Ubiquitination influences signal diversification and limits the duration of the signal through its role in the assembly of protein kinase complexes, subcellular localization, and the actual degradation of the kinase or its substrate. This review summarizes our current understanding of the roles of ubiquitin in regulating MAPK signaling.