You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Modern drug development is focused on two steps: the identification of new molecular targets and the development of drugs that affect these targets. A molecular target can be an enzymatic activity or a macromolecular interface that is important in a disease pathway. Current drugs on the market are biased toward targeting cell surface receptors and intracellular enzymatic activities. However, macromolecular interfaces can also serve as potential molecular targets. A recent paper from Kaelin and Dervan's groups examined an underused molecular target—transcription factor DNA binding. To specifically disrupt transcriptional activation, they used a rationally designed small molecule that binds specifically in the minor groove of a DNA sequence that in vivo is bound by a bHLH heterodimer transcription factor.