You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Olfaction—the sense of smell—is responsible for detecting molecules of immense structural variety. Precise recognition of such diverse stimuli requires a massive receptor repertoire. This functional challenge has been met by simultaneous expression of a multitude of odor-detecting receptors that all belong to the superfamily of heterotrimeric GTP-binding protein (G protein)–coupled receptors. Studies conducted over the past decade have led to the assumption that an individual olfactory sensory neuron expresses only a single odorant receptor, consequently giving rise to the "one receptor–one neuron" hypothesis. This idea is attractive because of its simplicity and has served as the basis for models of olfactory coding. However, recent reports regarding Drosophila have found exceptions to the rule that could have important implications for the logic of olfactory coding.