You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Gap junctions are a unique type of intercellular junction that mediate the direct exchange of small molecules between neighboring cells and play critical roles in the normal function of numerous organs. Mutations in the connexin proteins that make up gap junctions have been implicated in numerous human skin and neurosensory disorders. The ability of gap junctions to transmit molecules between cells is regulated by intracellular pH, the phosphorylation state of connexin, and the interaction of connexin with other cellular proteins. This Perspective focuses on the novel and complex events initiated by intracellular acidification resulting from tissue ischemia or hypoxia that lead to the interruption of intercellular communication between astrocytes. These events include alterations in connexin43 (Cx43) phosphorylation, disruption of β-actin binding to Cx43, and the induced interaction of Cx43 with the c-Src tyrosine kinase, extracellular signal-regulated kinase 1 and 2, and mitogen-activated protein kinase phosphatase 1.