Cell surface receptors are important communicators of external stimuli to the cell interior where they lead to initiation of various signaling pathways and cellular responses. The largest receptor family is the seven-transmembrane receptor (7TMR) family, with approximately 1000 coding genes in the human genome. When 7TMRs are stimulated with agonists, they activate heterotrimeric guanine nucleotide-binding proteins (G proteins), leading to the production of signaling second messengers, such as adenosine 3′,5′-monophosphate, inositol phosphates, and others. Activated receptors are rapidly phosphorylated on serine and threonine residues by specialized enzymes called G protein–coupled receptor kinases. Phosphorylated receptors bind the multifunctional adaptor proteins β-arrestin1 and β-arrestin2 with high affinity. β-arrestin binding blocks further G protein coupling, leading to "desensitization" of G protein–dependent signaling pathways. For several years, this was considered the sole function of β-arrestins. However, novel functions of β-arrestins have been discovered. β-arrestins are now designated as important adaptors that link receptors to the clathrin-dependent pathway of internalization. β-arrestins bind and direct the activity of several nonreceptor tyrosine kinases in response to 7TMR stimulation. β-arrestins also bind and scaffold members of such signaling cascades as the mitogen-activated protein kinases (MAPKs). β-arrestins are crucial components in 7TMR signaling leading to cellular responses that include cell survival and chemotaxis. β-arrestins act as endocytic adaptors and signal mediators not only for the 7TMRs, but also for several receptor tyrosine kinases.
Description
This record contains general information about the Seven-Transmembrane Receptor Signaling Through β-Arrestin collected across species.
Signal transduction by the superfamily of seven-transmembrane receptors [7TMRs, also called heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs)] is modulated by three families of regulatory proteins: G proteins, GPCR kinases (GRKs), and arrestins. Activation of 7TMRs by their agonists promotes conformational changes that lead to activation of G proteins (dissociation of their α and βγ subunits, each of which signals to downstream effectors, such as second messenger–generating enzymes), and ultimately results in changes in cellular physiology.
An important feature of agonist-stimulated 7TMRs is their waning responsiveness to repeated stimulation with agonists, a process termed desensitization. This two-step process involves (i) phosphorylation of receptor intracellular domains by GRKs, and (ii) recruitment of cytosolic arrestin proteins. The mammalian arrestin family is composed of four members: arrestin1 and arrestin4 are confined to retinal rods and cones, respectively, and arrestin2 (also known as β-arrestin1) and arrestin3 (also known β-arrestin2) are ubiquitously distributed and bind most 7TMRs.
Although originally discovered as inhibitors of receptor–G protein coupling, the β-arrestins are now appreciated for their novel roles in endocytosis and signaling by 7TMRs (1–4). This Pathway serves to highlight the various signaling processes in which β-arrestins participate (Fig. 1). β-arrestins recruit c-Src family nonreceptor tyrosine kinase molecules to form signaling complexes with activated receptors (5, 6) (Table 1). Receptor-bound β-arrestins act as signaling scaffolds for mitogen-activated protein kinase (MAPK) cascades, leading to robust activation of c-Jun N-terminal kinase 3 (JNK3), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and p38 kinases (7–14) (Table 2). β-arrestin-dependent ERK activation and p38 activation may be involved in stimulus-driven cell migration (chemotaxis) (10, 15–19). β-arrestins stabilize the inhibitor of nuclear factor κB (IκB) protein in the cytosol and thus regulate nuclear factor κB (NF-κB) pathways (20, 21) (Table 1).
Pathway image captured from the dynamic graphical display of the information in the Connections Maps available 9 October 2005. For a key to the colors and symbols and to access the underlying data, please visit the pathway (About Connections Map).
MAPK pathways regulated by β-arrestins in response to 7TMR stimulation. AT1aR, angiotensin type 1a receptor; β2AR, beta 2 adrenergic receptor; CCR7, chemokine (C-C motif) receptor 7; COS-7, African monkey kidney cells transformed with SV40; CXCR4, chemokine (CXC motif) receptor 2; ELC, Epstein-Barr virus-induced molecule-1 ligand chemokine; HEK-293, human embryonic kidney 293 cells; ERK, extracellular signal-regulated kinase; JNK, c-Jun amino terminal kinase; IGF-1R, insulin-like growth factor type 1 receptor; MDA-MB-231, human breast adenocarcinoma; MEFs, mouse embryonic cells; NK1R, neurokinin 1 receptor; PAR2, protease-activated receptor 2; PC12, pheochromocytoma 12; PKC, protein kinase C; pERK, phosphorylated ERK; S-49, murine T lymphoma cell line; siRNA, small-interfering RNA; TrK receptor, tropomyosin-related kinase receptor; US28, human cytomegalovirus G protein coupled receptor US28 gene; V2R, vasopressin type 2 receptor.
Mdm2, an oncoprotein and E3 ubiquitin ligase, binds and ubiquitinates β-arrestins upon β2-adrenergic receptor stimulation. Inhibition of this β-arrestin ubiquitination impedes agonist-stimulated receptor internalization (41). β-arrestin ubiquitination is not only required for its endocytotic functions, but also for stable receptor interaction and efficient scaffolding and targeting of phosphorylated ERK (pERK) to endosomal compartments (42, 43). It is predictable that ubiquitination of β-arrestin regulates its multifaceted functions, including signaling.
The roles of β-arrestin are currently expanding beyond the realm of 7TMRs. β-arrestin forms a crucial component in the signaling pathways initiated by insulin-like growth factor 1 (IGF-1) receptor [see the IGF-1 Receptor Signaling through β-Arrestin Pathway (About Connections Map)]. Details about β-arrestin mediated signaling in human embryonic kidney 293 cells in response to angiotensin are also available in the specific pathway (Table 3).
K. L. Pierce, L. M. Luttrell, R. J. Lefkowitz, New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene20, 1532–1539 (2001).
L. M. Luttrell, R. J. Lefkowitz, The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J. Cell Sci.115, 455–465 (2002).
S. K. Shenoy, R. J. Lefkowitz, Multifaceted roles of beta-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling. Biochem. J.375, 503–515 (2003).
L. M. Luttrell, S. S. Ferguson, Y. Daaka, W. E. Miller, S. Maudsley, G. J. Della Rocca, F. Lin, H. Kawakatsu, K. Owada, D. K. Luttrell, M. G. Caron, R. J. Lefkowitz, Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science283, 655–661 (1999).
T. Imamura, J. Huang, S. Dalle, S. Ugi, I. Usui, L. M. Luttrell, W. E. Miller, R. J. Lefkowitz, J. M. Olefsky, beta-arrestin-mediated recruitment of the Src family kinase Yes mediates endothelin-1-stimulated glucose transport. J. Biol. Chem.276, 43663–43667 (2001).
P. H. McDonald, C. W. Chow, W. E. Miller, S. A. Laporte, M. E. Field, F. T. Lin, R. J. Davis, R. J. Lefkowitz, Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science290, 1574–1577 (2000).
K. A. DeFea, J. Zalevsky, M. S. Thoma, O. Dery, R. D. Mullins, N. W. Bunnett, beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J. Cell Biol.148, 1267–1281 (2000).
K. A. DeFea, Z. D. Vaughn, E. M. O'Bryan, D. Nishijima, O. Dery, N. W. Bunnett, The proliferative and antiapoptotic effects of substance P are facilitated by formation of a beta -arrestin-dependent scaffolding complex. Proc. Natl. Acad. Sci. U.S.A.97, 11086–11091 (2000).
Y. Sun, Z. Cheng, L. Ma, G. Pei, Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J. Biol. Chem.277, 49212–49219 (2002).
L. M. Luttrell, F. L. Roudabush, E. W. Choy, W. E. Miller, M. E. Field, K. L. Pierce, R. J. Lefkowitz, Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc. Natl. Acad. Sci. U.S.A.98, 2449–2454 (2001).
H. Wei, S. Ahn, S. K. Shenoy, S. S. Karnik, L. Hunyady, L. M. Luttrell, R. J. Lefkowitz, Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc. Natl. Acad. Sci. U.S.A.100, 10782–10787 (2003).
S. Ahn, H. Wei, T. R. Garrison, R. J. Lefkowitz, Reciprocal regulation of angiotensin receptor-activated extracellular signal-regulated kinases by beta-arrestins 1 and 2. J. Biol. Chem.279, 7807–7811 (2004).
S. Ahn, S. K. Shenoy, H. Wei, R. J. Lefkowitz, Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J. Biol. Chem.279, 35518–35525 (2004).
L. Ge, Y. Ly, M. Hollenberg, K. DeFea, A beta-arrestin-dependent scaffold is associated with prolonged MAPK activation in pseudopodia during protease-activated receptor-2-induced chemotaxis. J. Biol. Chem.278, 34418–34426 (2003).
A. M. Fong, R. T. Premont, R. M. Richardson, Y. R. Yu, R. J. Lefkowitz, D. D. Patel, Defective lymphocyte chemotaxis in beta-arrestin2- and GRK6-deficient mice. Proc. Natl. Acad. Sci. U.S.A.99, 7478–7483 (2002).
L. Ge, S. K. Shenoy, R. J. Lefkowitz, K. DeFea, Constitutive protease-activated receptor-2-mediated migration of MDA MB-231 breast cancer cells requires both beta-arrestin-1 and -2. J. Biol. Chem.279, 55419–55424 (2004).
J. K. Walker, A. M. Fong, B. L. Lawson, J. D. Savov, D. D. Patel, D. A. Schwartz, R. J. Lefkowitz, Beta-arrestin-2 regulates the development of allergic asthma. J. Clin. Invest.112, 566–574 (2003).
D. L. Hunton, W. G. Barnes, J. Kim, X. R. Ren, J. D. Violin, E. Reiter, G. Milligan, D. D. Patel, R. J. Lefkowitz, Beta-arrestin 2-dependent angiotensin II type 1A receptor-mediated pathway of chemotaxis. Mol. Pharmacol.67, 1229–1236 (2005).
D. S. Witherow, T. R. Garrison, W. E. Miller, R. J. Lefkowitz, beta-Arrestin inhibits NF-kappaB activity by means of its interaction with the NF-kappaB inhibitor IkappaBalpha. Proc. Natl. Acad. Sci. U.S.A.101, 8603–8607 (2004).
H. Gao, Y. Sun, Y. Wu, B. Luan, Y. Wang, B. Qu, G. Pei, Identification of beta-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-kappaB pathways. Mol. Cell14, 303–317 (2004).
D. Fessart, M. Simaan, S. A. Laporte, c-Src regulates clathrin adapter protein 2 interaction with beta-arrestin and the angiotensin II type 1 receptor during clathrin-mediated internalization. Mol. Endocrinol.19, 491–503 (2005).
J. Barlic, J. D. Andrews, A. A. Kelvin, S. E. Bosinger, M. E. DeVries, L. Xu, T. Dobransky, R. D. Feldman, S. S. Ferguson, D. J. Kelvin, Regulation of tyrosine kinase activation and granule release through beta-arrestin by CXCRI. Nat. Immunol.1, 227–233 (2000).
W. Chen, L. A. Hu, M. V. Semenov, S. Yanagawa, A. Kikuchi, R. J. Lefkowitz, W. E. Miller, beta-Arrestin1 modulates lymphoid enhancer factor transcriptional activity through interaction with phosphorylated dishevelled proteins. Proc. Natl. Acad. Sci. U.S.A.98, 14889–14894 (2001).
T. J. Povsic, T. A. Kohout, R. J. Lefkowitz, Beta-arrestin1 mediates insulin-like growth factor 1 (IGF-1) activation of phosphatidylinositol 3-kinase (PI3K) and anti-apoptosis. J. Biol. Chem.278, 51334–51339 (2003).
R. Goel, P. J. Phillips-Mason, D. M. Raben, J. J. Baldassare, alpha-Thrombin induces rapid and sustained Akt phosphorylation by beta-arrestin1-dependent and -independent mechanisms, and only the sustained Akt phosphorylation is essential for G1 phase progression. J. Biol. Chem.277, 18640–18648 (2002).
A. Kiselev, M. Socolich, J. Vinos, R. W. Hardy, C. S. Zuker, R. Ranganathan, A molecular pathway for light-dependent photoreceptor apoptosis in Drosophila. Neuron28, 139–152 (2000).
P. G. Alloway, L. Howard, P. J. Dolph, The formation of stable rhodopsin-arrestin complexes induces apoptosis and photoreceptor cell degeneration. Neuron28, 129–138 (2000).
C. M. Revankar, C. M. Vines, D. F. Cimino, E. R. Prossnitz, Arrestins block G protein-coupled receptor-mediated apoptosis. J. Biol. Chem.279, 24578–24584 (2004).
A. Tohgo, K. L. Pierce, E. W. Choy, R. J. Lefkowitz, L. M. Luttrell, beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation. J. Biol. Chem.277, 9429–9436 (2002).
S. Ahn, S. K. Shenoy, H. Wei, R. J. Lefkowitz, Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J. Biol. Chem.279, 35518–35525 (2004).
M. Azzi, P. G. Charest, S. Angers, G. Rousseau, T. Kohout, M. Bouvier, G. Pineyro, Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc. Natl. Acad. Sci. U.S.A.100, 11406–11411 (2003).
L. Stalheim, Y. Ding, A. Gullapalli, M. M. Paing, B. L. Wolfe, D. R. Morris, J. Trejo, Multiple independent functions of arrestins in the regulation of protease-activated receptor-2 signaling and trafficking. Mol. Pharmacol.67, 78–87 (2005).
T. A. Kohout, S. L. Nicholas, S. J. Perry, G. Reinhart, S. Junger, R. S. Struthers, Differential desensitization, receptor phosphorylation, beta-arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7. J. Biol. Chem.279, 23214–23222 (2004).
S. Castro-Obregon, R. V. Rao, G. del Rio, S. F. Chen, K. S. Poksay, S. Rabizadeh, S. Vesce, X. K. Zhang, R. A. Swanson, D. E. Bredesen, Alternative, nonapoptotic programmed cell death: Mediation by arrestin 2, ERK2, and Nur77. J. Biol. Chem.279, 17543–17553 (2004).
A. Tohgo, E. W. Choy, D. Gesty-Palmer, K. L. Pierce, S. Laporte, R. H. Oakley, M. G. Caron, R. J. Lefkowitz, L. M. Luttrell, The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. J. Biol. Chem.278, 6258–6267 (2003).
S. Rakhit, S. Pyne, N. J. Pyne, Nerve growth factor stimulation of p42/p44 mitogen-activated protein kinase in PC12 cells: role of G(i/o), G protein-coupled receptor kinase 2, beta-arrestin I, and endocytic processing. Mol. Pharmacol.60, 63–70 (2001).
L. Iacovelli, L. Salvatore, L. Capobianco, A. Picascia, E. Barletta, M. Storto, S. Mariggio, M. Sallese, A. Porcellini, F. Nicoletti, A. De Blasi, Role of G protein-coupled receptor kinase 4 and beta-arrestin 1 in agonist-stimulated metabotropic glutamate receptor 1 internalization and activation of mitogen-activated protein kinases. J. Biol. Chem.278, 12433–12442 (2003).
F. T. Lin, Y. Daaka, R. J. Lefkowitz, beta-arrestins regulate mitogenic signaling and clathrin-mediated endocytosis of the insulin-like growth factor I receptor. J. Biol. Chem.273, 31640–31643 (1998).
W. E. Miller, D. A. Houtz, C. D. Nelson, P. E. Kolattukudy, R. J. Lefkowitz, G-protein-coupled receptor (GPCR) kinase phosphorylation and beta-arrestin recruitment regulate the constitutive signaling activity of the human cytomegalovirus US28 GPCR. J. Biol. Chem.278, 21663–21671 (2003).
S. K. Shenoy, P. H. McDonald, T. A. Kohout, R. J. Lefkowitz, Regulation of receptor fate by ubiquitination of activated beta 2- adrenergic receptor and beta-arrestin. Science294, 1307–1313 (2001).
S. K. Shenoy, R. J. Lefkowitz, Trafficking patterns of beta-arrestin and G protein-coupled receptors determined by the kinetics of beta-arrestin deubiquitination. J. Biol. Chem.278, 14498–14506 (2003).
S. K. Shenoy, R.J. Lefkowitz, Receptor-specific Ubiquitination of β-arrestin directs assembly and targeting of seven-transmembrane receptor signalosomes. J. Biol. Chem.280, 15315–15324 (2005).