You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
First identified as peptides derived from the human immunodeficiency virus (HIV) transcriptional regulator Tat and the Drosophila transcription factor Antennapedia, transduction (or cell-penetrating) peptide sequences enable soluble proteins to cross biological membranes and interact with cytosolic and nuclear targets. Proteins containing such sequences have been found to function as transcription factors, to inhibit apoptosis, to play roles in axon guidance, or to transport viral mRNA between cells. The recent demonstration that dynorphins are able to act as transduction peptides suggests that these neuropeptides may have roles independent of opiate receptor activation.