You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The transforming growth factor–β (TGF-β) superfamily comprises nearly 30 growth and differentiation factors that include TGF-βs, activins, inhibins, and bone morphogenetic proteins (BMPs). Multiple members of the TGF-β superfamily serve key roles in stem cell fate commitment. The various members of the family can exhibit disparate roles in regulating the biology of embryonic stem (ES) cells and tumor suppression. For example, TGF-β inhibits proliferation of multipotent hematopoietic progenitors, promotes lineage commitment of neural precursors, and suppresses epithelial tumors. BMPs block neural differentiation of mouse and human ES cells, contribute to self-renewal of mouse ES cells, and also suppress tumorigenesis. ES cells and tumors may be exposed to multiple TGF-β members, and it is likely that the combination of growth factors and cross-talk among the intracellular signaling pathways is what precisely defines stem cell fate commitment. This Connections Map Pathway in the Database of Cell Signaling integrates signaling not only from TGF-β and BMP but also from the ligands nodal and activin, and describes the role of the signaling pathways activated by these ligands in mammalian development. Much of the evidence for the connections shown comes from studies on mouse and human ES cells or mouse knockouts. This pathway is important for understanding not only stem cell biology, but also the molecular effectors of TGF-β and BMP signaling that may contribute to cancer suppression or progression and thus are potential targets for therapeutic intervention.