You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Chemotaxis, the movement of cells along chemical gradients, is critical for the recruitment of immune cells to sites of inflammation; however, how cells navigate in chemotactic gradients is poorly understood. Here, we show that macrophages navigate in a gradient of the chemoattractant C5a through the release of adenosine triphosphate (ATP) and autocrine “purinergic feedback loops” that involve receptors for ATP (P2Y2), adenosine diphosphate (ADP) (P2Y12), and adenosine (A2a, A2b, and A3). Whereas macrophages from mice deficient in pannexin-1 (which is part of a putative ATP release pathway), P2Y2, or P2Y12 exhibited efficient chemotactic navigation, chemotaxis was blocked by apyrase, which degrades ATP and ADP, and by the inhibition of multiple purinergic receptors. Furthermore, apyrase impaired the recruitment of monocytes in a mouse model of C5a-induced peritonitis. In addition, we found that stimulation of P2Y2, P2Y12, or adenosine receptors induced the formation of lamellipodial membrane protrusions, causing cell spreading. We propose a model in which autocrine purinergic receptor signaling amplifies and translates chemotactic cues into directional motility.