You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Growth factor stimulation generates transient H-Ras activity at the plasma membrane but sustained activity at the Golgi. Two overlapping regulatory networks control compartmentalized H-Ras activity: the guanosine diphosphate–guanosine triphosphate cycle and the acylation cycle, which constitutively traffics Ras isoforms that can be palmitoylated between intracellular membrane compartments. Quantitative imaging of H-Ras activity after decoupling of these networks revealed regulation of H-Ras activity at the plasma membrane but not at the Golgi. Nevertheless, upon stimulation with epidermal growth factor, Ras activity at the Golgi displayed a pulse-like profile similar to that at the plasma membrane but also remained high after the initial stimulus. A compartmental model that included the acylation cycle and H-Ras regulation at the plasma membrane accounted for the pulse-like profile of H-Ras activity at the Golgi but implied that sustained H-Ras activity at the Golgi required H-Ras activation at an additional compartment, which we experimentally determined to be the endoplasmic reticulum. Thus, in addition to maintaining the localization of Ras, the acylation cycle underlies a previously unknown form of signal propagation similar to radio transmission in its generation of a constitutive Ras “carrier wave” that transmits Ras activity between subcellular compartments.