You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Dysregulation of c-MYC plays a critical role in the development of many human cancers. New evidence has uncovered a previously unknown mechanism whereby increased abundance of c-MYC can promote poly(ADP-ribose) polymerase (PARP)–dependent DNA repair pathways and induce relative chemoresistance. The adaptor protein BIN1, whose expression is regulated by c-MYC, interacts with PARP1 and inhibits its enzymatic activity. A model has been proposed in which increased abundance of c-MYC indirectly leads to decreased BIN1 expression, in turn leading to increased PARP activity and resistance to DNA-damaging agents. The clinical implications of these findings are discussed.