You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
T cell activation, a critical event in adaptive immune responses, depends on productive interactions between T cell receptors (TCRs) and antigens presented as peptide-bound major histocompatibility complexes (pMHCs). Activated T cells lyse infected cells, secrete cytokines, and perform other effector functions with various efficiencies, which depend on the binding parameters of the TCR-pMHC complex. The mechanism through which binding parameters are translated to the efficiency of T cell activation, however, remains controversial. The “affinity model” suggests that the dissociation constant (KD) of the TCR-pMHC complex determines the response, whereas the “productive hit rate model” suggests that the off-rate (koff) is critical. Here, we used mathematical modeling to show that antigen potency, as determined by the EC50 (half-maximal effective concentration), which is used to support KD-based models, could not discriminate between the affinity and the productive hit rate models. Both models predicted a correlation between EC50 and KD, but only the productive hit rate model predicted a correlation between maximal efficacy (Emax), the maximal T cell response induced by pMHC, and koff. We confirmed the predictions made by the productive hit rate model in experiments with cytotoxic T cell clones and a panel of pMHC variants. Thus, we propose that the activity of an antigen is determined by both its potency (EC50) and maximal efficacy (Emax).