You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The autophagic pathway participates in many physiological and pathophysiological processes. Autophagy plays an important role, as part of the innate immune response, in the first line of defense against intruding pathogens. Recognition of pathogens by the autophagic machinery is mainly mediated by autophagic adaptors, proteins that simultaneously interact with specific cargos and components of the autophagic machinery. However, the exact mechanisms and signaling pathways regulating this step are largely unknown. TANK-binding kinase 1 (TBK1) has been implicated recently in the autophagic clearance of the bacterium Salmonella enterica. After its activation by the invading bacteria, TBK1 directly phosphorylated the autophagic adaptor optineurin (OPTN). This modification led to enhanced interaction of OPTN with the family of mammalian Atg8 proteins, which are ubiquitin-like and essential for autophagy. Such interaction allows the autophagic machinery to be recruited to the intracellular loci of the bacteria, resulting in elimination of the bacteria by lysosomes. This study provides an example by which the innate immune response directly regulates cargo recruitment into autophagosomes.