You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The phosphoinositide metabolic pathway, which regulates cellular processes implicated in survival, motility, and trafficking, is often subverted by bacterial pathogens. Shigella flexneri, a bacterium that causes dysentery, injects IpgD, a phosphoinositide phosphatase that generates the lipid phosphatidylinositol 5-phosphate (PI5P), into host cells, thereby activating the phosphoinositide 3-kinase–Akt survival pathway. We show that epidermal growth factor receptor (EGFR) is required for PI5P-dependent activation of Akt in infected HeLa cells or cells ectopically expressing IpgD. Cells treated with PI5P had increased numbers of early endosomes with activated EGFR, no detectable EGFR in the late endosomal or lysosomal compartments, and prolonged EGFR signaling. Endosomal recycling and retrograde pathways were spared, indicating that the effect of PI5P on the degradative route to the late endocytic compartments was specific. Thus, we identified PI5P, which was enriched in endosomes, as a regulator of vesicular trafficking that alters growth factor receptor signaling by impairing lysosomal degradation, a property used by S. flexneri to favor survival of host cells.