You are currently viewing the editor's summary.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
p53 Activates MicroRNA-34 to Inhibit Wnt Signaling
The tumor suppressor p53 is missing or nonfunctional in many cancers, whereas the canonical Wnt signaling pathway is frequently activated. Here, Kim et al. show that p53 restrained Wnt signaling during Xenopus development, whereas loss of p53 function led to aberrant activation of the canonical Wnt signaling pathway, with microRNA-34 (miR-34) providing the connection between the two. They found that p53 stimulated production of miR-34, which, in turn, targeted key genes in the Wnt signaling pathway. Analyses of gene expression data sets indicated that loss of p53 or miR-34 function was associated with activation of Wnt signaling in human cancers; moreover, loss of p53 function increased Wnt signaling in colon cancer cells in vitro. In p53-mutant colon cancer cells, miR-34 attenuated Wnt signaling and decreased the invasiveness of these cells in vitro. Thus, the p53–miR-34–Wnt pathway appears to be crucial not only during development but also for p53’s tumor suppressor function.