You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Defining the pathways through which neurons and astrocytes communicate may contribute to the elucidation of higher central nervous system functions. We investigated the possibility that decreases in extracellular calcium ion concentration ([Ca2+]e) that occur during synaptic transmission might mediate signaling from neurons to glia. Using noninvasive photolysis of the photolabile Ca2+ buffer diazo-2 {N-[2-[2-[2-[bis(carboxymethyl)amino]-5-(diazoacetyl)phenoxy]ethoxy]-4-methylphenyl]-N-(carboxymethyl)-, tetrapotassium salt} to reduce [Ca2+]e or caged glutamate to simulate glutamatergic transmission, we found that a local decline in extracellular Ca2+ triggered astrocytic adenosine triphosphate (ATP) release and astrocytic Ca2+ signaling. In turn, activation of purinergic P2Y1 receptors on a subset of inhibitory interneurons initiated the generation of action potentials by these interneurons, thereby enhancing synaptic inhibition. Thus, astrocytic ATP release evoked by an activity-associated decrease in [Ca2+]e may provide a negative feedback mechanism that potentiates inhibitory transmission in response to local hyperexcitability.