You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Termination of heterotrimeric guanine nucleotide–binding protein (G protein) signaling downstream of activated G protein–coupled receptors (GPCRs) is accelerated by regulator of G protein signaling (RGS) proteins, which act as guanosine triphosphatase (GTPase)–activating proteins (GAPs). Using a Xenopus oocyte expression system, we found that although RGS proteins had a negative effect of accelerating the kinetics of GPCR-coupled potassium ion (K+) channel (GIRK) deactivation, they also had positive effects of increasing the amplitudes and activation kinetics of neurotransmitter-evoked GIRK currents. The RGS box domain alone was sufficient to stimulate neurotransmitter-dependent activation of GIRK currents. Moreover, RGS4 mutants with compromised GAP activity augmented GPCR-GIRK coupling (as assessed by measurement of the GIRK current elicited by neurotransmitter). By accelerating G protein activation kinetics, RGS4 specifically stimulated Gαo, which stimulated GPCR-GIRK coupling despite its GAP activity. Opposing actions of RGS proteins thus both stimulate and inhibit G proteins to modulate the amplitude and kinetics of neurotransmitter-induced GIRK currents, thereby distinguishing the responses to activation of different G protein isoforms.