You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Cannabinoid 1 (CB1) receptors have been previously detected in pancreatic β cells, where they attenuate insulin action. We now report that CB1 receptors form a heteromeric complex with insulin receptors and the heterotrimeric guanosine triphosphate–binding protein α subunit Gαi. Gαi inhibited the kinase activity of the insulin receptor in β cells by directly binding to the activation loop in the tyrosine kinase domain of the receptor. Consequently, phosphorylation of proapoptotic protein Bad was reduced and its apoptotic activity was stimulated, leading to β-cell death. Pharmacological blockade or genetic deficiency of CB1 receptors enhanced insulin receptor signaling after injury, leading to reduced blood glucose concentrations and activation of Bad, which increased β-cell survival. These findings provide direct evidence of physical and functional interactions between CB1 and insulin receptors and suggest a mechanism whereby peripherally acting CB1 receptor antagonists improve insulin action in insulin-sensitive tissues independent of the other metabolic effects of CB1 receptors.