You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Toll-like receptors (TLRs) recognize specific microbial products and elicit innate immune signals to activate specific transcription factors that induce protective proteins, such as interferon. TLR3 is localized to endosomes and recognizes double-stranded RNA (dsRNA), which is generated by virally infected or apoptotic cells. TLR3 has been genetically linked to several human diseases, including some without viral etiology. Unlike other TLRs, TLR3 requires phosphorylation of two specific tyrosine residues in its cytoplasmic domain to recruit the adaptor protein TRIF (Toll–interleukin-1 receptor domain–containing adaptor protein inducing interferon-β) and initiate the antiviral response. We showed that two protein tyrosine kinases, the epidermal growth factor receptor (EGFR) ErbB1 and Src, bound sequentially to dsRNA-activated TLR3 and phosphorylated the two tyrosine residues. In cells lacking EGFR or treated with an inhibitor of EGFR, viral replication was enhanced and induction of antiviral genes was impaired. Thus, these results reveal a connection between antiviral innate immunity and cell growth regulators.